OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 206–218

Overcoming turbulence-induced space-variant blur by using phase-diverse speckle

Brian J. Thelen, Richard G. Paxman, David A. Carrara, and John H. Seldin  »View Author Affiliations

JOSA A, Vol. 26, Issue 1, pp. 206-218 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (911 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Space-variant blur occurs when imaging through volume turbulence over sufficiently large fields of view. Space-variant effects are particularly severe in horizontal-path imaging, slant-path (air-to-ground or ground-to-air) geometries, and ground-based imaging of low-elevation satellites or astronomical objects. In these geometries, the isoplanatic angle can be comparable to or even smaller than the diffraction-limited resolution angle. We report on a postdetection correction method that seeks to correct for the effects of space-variant aberrations, with the goal of reconstructing near-diffraction-limited imagery. Our approach has been to generalize the method of phase-diverse speckle (PDS) by using a physically motivated distributed-phase-screen model. Simulation results are presented that demonstrate the reconstruction of near-diffraction-limited imagery under both matched and mismatched model assumptions. In addition, we present evidence that PDS could be used as a beaconless wavefront sensor in a multiconjugate adaptive optics system when imaging extended scenes.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(110.6150) Imaging systems : Speckle imaging

ToC Category:
Imaging Systems

Original Manuscript: June 9, 2008
Revised Manuscript: September 29, 2008
Manuscript Accepted: October 20, 2008
Published: December 24, 2008

Brian J. Thelen, Richard G. Paxman, David A. Carrara, and John H. Seldin, "Overcoming turbulence-induced space-variant blur by using phase-diverse speckle," J. Opt. Soc. Am. A 26, 206-218 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. R. Hunt, W. R. Fright, and R. H. T. Bates, “Analysis of the shift-and-add method for imaging through turbulent media,” J. Opt. Soc. Am. 73, 456-465 (1983). [CrossRef]
  2. J. C. Dainty, “Stellar speckle imaging,” in Topics in Applied Physics: Laser Speckle and Related Phenomena, 2nd ed., J.C.Dainty, ed. (Springer-Verlag, 1984), pp. 297-328.
  3. T. J. Schulz, “Multi-frame blind deconvolution of astronomical images,” J. Opt. Soc. Am. A 10, 1064-1073 (1993). [CrossRef]
  4. J. Primot, G. Rousset, and J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1598-1608 (1990). [CrossRef]
  5. J. H. Seldin and R. G. Paxman, “Phase-diverse speckle reconstruction of solar data,” Proc. SPIE 2302, 268-280 (1994). [CrossRef]
  6. R. G. Paxman, J. H. Seldin, M. G. Löfdahl, G. B. Scharmer, and C. U. Keller, “Evaluation of phase-diversity techniques for solar-image restoration,” Astrophys. J. 467, 1087-1099 (1996). [CrossRef]
  7. C. J. Carrano, “Speckle imaging over horizontal paths,” Proc. SPIE 4825, 109-120 (2002). [CrossRef]
  8. C. J. Carrano, “Progress in horizontal and slant-path imaging using speckle imagery,” Proc. SPIE 5001, 56-64 (2003). [CrossRef]
  9. C. J. Carrano, “Anisoplanatic performance of horizontal-path speckle imaging,” Proc. SPIE 5162, 14-27 (2003). [CrossRef]
  10. C. J. Carrano, “Mitigating atmospheric effects in high-resolution infrared surveillance imagery with bispectral speckle imaging,” Proc. SPIE 6316, 631602 (2006). [CrossRef]
  11. B. L. Ellerbroek, “First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783-805 (1994). [CrossRef]
  12. D. C. Johnston and B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394-408 (1994). [CrossRef]
  13. T. Fusco, M. N. Nicolle, G. Rousset, V. Michau, A. Blanc, J.-L. Bezuit, and J.-M. Conan, “Problmatique de l'analyse de front d'onde en optique adaptative multiconjugue,” C. R. Phys. 6, 1049-4058 (2005). [CrossRef]
  14. D. Fraser, G. Thorpe, and A. Lambert, “Atmospheric turbulence visualization with wide-area motion-blur restoration,” J. Opt. Soc. Am. A 16, 1751-1758 (1999). [CrossRef]
  15. R. A. Shine, A. M. Title, T. D. Tarbell, K. Smith, and Z. A. Frank, “High-resolution observations of the Evershed effect in sunspots,” Astrophys. J. 430, 413-424 (1994). [CrossRef]
  16. G. W. Carhart and M. A. Vorontsov, “Synthetic imaging: nonadaptive anisoplanatic image correction in atmospheric turbulence,” Opt. Lett. 23, 745-747 (1998). [CrossRef]
  17. M. A. Vorontsov and G. W. Carhart, “Anisoplanatic imaging through turbulent media: image recovery by local information fusion from a set of short-exposure images,” J. Opt. Soc. Am. A 18, 1312-1324 (2001). [CrossRef]
  18. R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32-39 (1979).
  19. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072-1085 (1992). [CrossRef]
  20. R. A. Gonsalves, “Nonisoplanatic imaging by phase diversity,” Opt. Lett. 19, 493-495 (1994). [CrossRef] [PubMed]
  21. R. G. Paxman, B. J. Thelen, and J. H. Seldin, “Phase-diversity correction of space-variant turbulence-induced blur,” Opt. Lett. 19, 1231-1233 (1994). [CrossRef] [PubMed]
  22. J. R. Fienup, B. J. Thelen, R. G. Paxman, and D. A. Carrara, “Comparison of phase diversity and curvature wavefront sensing,” Proc. SPIE 3353, 930-940 (1998). [CrossRef]
  23. D. J. Lee, M. C. Roggemann, and B. M. Welsh, “Cramer-Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005-1015 (1999). [CrossRef]
  24. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A 20, 1490-1504 (2003). [CrossRef]
  25. S. Prasad, “Information-optimized phase diversity speckle imaging,” Opt. Lett. 29, 563-565 (2004). [CrossRef] [PubMed]
  26. S. Prasad, “Fisher-information-based analysis of a phase-diversity-speckle imaging system,” J. Opt. Soc. Am. A 21, 2073-2088 (2004). [CrossRef]
  27. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Phase-diverse speckle interferometry,” in Signal Recovery and Synthesis IV, Vol. 11 of OSA Technical Digest Series 1992 (Optical Society of American, 1992).
  28. R. G. Paxman and J. H. Seldin, “Fine-resolution imaging of solar features using phase-diverse speckle imaging,” in Proceedings of the 13th Sacramento Peak Summer Workshop, Real Time and Post-Facto Solar Image Correction, R.R.Raddick, ed. (National Solar Observatory, 1994), pp. 112-118.
  29. J. H. Seldin, R. G. Paxman, and B. L. Ellerbroek, “Post-detection correction of compensated imagery using phase-diverse speckle,” in Adaptive Optics, Vol. 23 of OSA Technical Digest Series (Optical Society of America, 1995), pp. 471-476.
  30. J. H. Seldin, R. G. Paxman, B. L. Ellerbroek, and D. C. Johnston, “Phase-diverse speckle restorations of artificial satellites imaged with adaptive-optics compensation,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (addendum) (Optical Society of America, 1996).
  31. M. Löfdahl and G. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243 (1994).
  32. R. G. Paxman, J. H. Seldin, and C. U. Keller, “Phase-diversity data sets and processing strategies,” in High Resolution Solar Physics: Theory, Observations, and Techniques, T.R.Rimmele, K.S.Balasubramaniam, and R.R.Raddick, eds., Astron. Soc. Pac. Conf. Ser. 13, 311-329 (1999).
  33. J. M. Martin and S. M. Flatte, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111-2126 (1988). [CrossRef] [PubMed]
  34. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  35. R. G. Paxman, B. J. Thelen, and J. J. Miller, “Optimal simulation of volume turbulence with phase screens,” Proc. SPIE 3763-01, 2-10 (1999). [CrossRef]
  36. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).
  37. D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A 12, 272-283 (1995). [CrossRef]
  38. D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Math. Program. 45, 503-528 (1989). [CrossRef]
  39. M. I. Miller, D. L. Snyder, and T. R. Miller, “Maximum-likelihood reconstruction for single photon emission computed tomography,” IEEE Trans. Nucl. Sci. 32, 769-778 (1985). [CrossRef]
  40. B. J. Thelen, R. G. Paxman, D. A. Carrara, and J. H. Seldin, “Maximum a posteriori estimation of fixed aberrations, dynamic aberrations, and the object from phase-diverse speckle data,” J. Opt. Soc. Am. A 16, 1016-1025 (1999). [CrossRef]
  41. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966). [CrossRef]
  42. J. H. Seldin, M. F. Reiley, R. G. Paxman, B. E. Stribling, B. L. Ellerbroek, and D. C. Johnston, “Space-object identification using phase-diverse speckle,” Proc. SPIE 3170, 2-15 (1997). [CrossRef]
  43. R. L. Kendrick, D. S. Acton, and A. L. Duncan, “Phase-diversity wave-front sensor for imaging systems,” Appl. Opt. 33, 6533-6546 (1994). [CrossRef] [PubMed]
  44. J. H. Seldin, R. G. Paxman, V. G. Zarafis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture multiple-telescope array using broadband phase diversity,” Proc. SPIE 4091, 48-63 (2000). [CrossRef]
  45. R. L. Kendrick, J.-N. Aubrun, R. Bell, “Wide-field Fizeau imaging telescope: experimental results,” Appl. Opt. 45, 4235-4240 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited