OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 2147–2162

Solution of transport equations in layered media with refractive index mismatch using the P N -method

Kevin G. Phillips and Steven L. Jacques  »View Author Affiliations


JOSA A, Vol. 26, Issue 10, pp. 2147-2162 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002147


View Full Text Article

Enhanced HTML    Acrobat PDF (358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The P N -method is a spectral discretization technique used to obtain numerical solutions to the radiative transport equation. To the best of our knowledge, the P N -method has yet to be generalized to the case of refractive index mismatch in layered slabs used to numerically simulate skin. Our main contribution is the application of a collocation method that takes into account refractive index mismatch at layer interfaces. The stability, convergence, and accuracy of the method are established. Example calculations demonstrating the flexibility of the method are performed.

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(030.5620) Coherence and statistical optics : Radiative transfer
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 16, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: July 17, 2009
Published: September 8, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Kevin G. Phillips and Steven L. Jacques, "Solution of transport equations in layered media with refractive index mismatch using the PN-method," J. Opt. Soc. Am. A 26, 2147-2162 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-10-2147


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Welch and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  2. M. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer-Verlag, 2006).
  3. R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rcslm),” J. Biomed. Opt. 13, 041309 (2008). [CrossRef] [PubMed]
  4. K. Ren, G. Bal, and A. Hielscher, “Transport- and diffusion-based optical tomography in small domains: a comparative study,” Appl. Opt. 46, 6669-6679 (2007). [CrossRef] [PubMed]
  5. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559-568 (1993). [CrossRef] [PubMed]
  6. P. González-Rodríguez and A. D. Kim, “Reflectance optical tomography in epithelial tissues,” Inverse Probl. 25, 015001 (2009). [CrossRef]
  7. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  8. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988). [CrossRef] [PubMed]
  9. A. D. Kim and M. Moscoso, “Light transport in two-layer tissues,” J. Biomed. Opt. 10, 034015 (2005). [CrossRef] [PubMed]
  10. P. González-Rodríguez and A. D. Kim, “Light propagation in two-layer tissues with an irregular interface,” J. Opt. Soc. Am. A 25, 64-73 (2008). [CrossRef]
  11. R. Elaloufi, S. Arridge, R. Pierrat, and R. Carminati, “Light propagation in multilayered scattering media beyond the diffusive regime,” Appl. Opt. 46, 2528-2539 (2007). [CrossRef] [PubMed]
  12. Z. Jin and K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system,” Appl. Opt. 33, 431-442 (1994). [CrossRef] [PubMed]
  13. R. D. M. Garcia, C. E. Siewert, and A. M. Yacout, “On the use of Fresnel boundary and interface conditions in radiative-transfer calculations for multilayered media,” J. Quant. Spectrosc. Radiat. Transf. 109, 752-769 (2008). [CrossRef]
  14. R. D. M. Garcia, C. E. Siewert, and A. M. Yacout, “Radiative transfer in a multi-layer medium subject to Fresnel boundary and interface conditions and uniform illumination by obliquely incident parallel rays,” J. Quant. Spectrosc. Radiat. Transf. 109, 2151-2170 (2008). [CrossRef]
  15. C. Bordier, C. Andraud, and J. Lafait, “Model of light scattering that includes polarization effects by multilayered media,” J. Opt. Soc. Am. A 25, 1406-1419 (2008). [CrossRef]
  16. M. Elias and G. Elias, “Radiative transfer in inhomogenous stratefied scattering media with use of the auxiliary function method,” J. Opt. Soc. Am. A 21, 580-589 (2004). [CrossRef]
  17. C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A 24, 2196-2205 (2007). [CrossRef]
  18. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, 2006).
  19. F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42, 3063-3071 (2003). [CrossRef] [PubMed]
  20. I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse relfectance images,” J. Biomed. Opt. 12, 054006-1-12 (2007). [CrossRef]
  21. C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method: inverse problem,” J. Opt. Soc. Am. A 25, 1737-1743 (2008). [CrossRef]
  22. A. D. Kim and M. Moscoso, “Radiative transport theory for optical molecular imaging,” Inverse Probl. 22, 23-42 (2006). [CrossRef]
  23. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354-1356 (2005). [CrossRef] [PubMed]
  24. K. G. Phillips and C. Lancellotti, “A universal numerical treatment of radiative transport equations with differential and integral scattering operators,” Proc. SPIE 6864, 68640Z (2008). [CrossRef]
  25. K. G. Phillips and C. Lancellotti, “On the accuracy of generalized Fokker-Planck equations in tissue optics,” Appl. Opt. 48, 229-241 (2009). [CrossRef] [PubMed]
  26. L. Ryzhik, G. Papanicolaou, and J. B. Keller, “Transport equations for elastic and other waves in random media,” Wave Motion 24, 327-370 (1996). [CrossRef]
  27. Michael I. Mishchenko, “Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics,” Appl. Opt. 41, 7114-7134 (2002). [CrossRef] [PubMed]
  28. G. C. Pomraning, “The Fokker-Planck equation as an asymptotic limit,” Math. Models Meth. Appl. Sci. 2, 21-36 (1992). [CrossRef]
  29. E. W. Larsen, “The linear Boltzmann equation in optically thick systems with forward-peaked scattering,” Prog. Nucl. Energy 34, 413-423 (1999). [CrossRef]
  30. A. D. Kim and J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A 20, 92-98 (2003). [CrossRef]
  31. P. González-Rodríguez and A. D. Kim, “Light propagation in tissues with forward-peaked and large angle scattering,” Appl. Opt. 47, 2599-2609 (2008). [CrossRef] [PubMed]
  32. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, 1967).
  33. A. E. Profio, “Light transport in tissue,” Appl. Opt. 28, 2216-2222 (1989). [CrossRef] [PubMed]
  34. A. D. Kim, “Transport theory for light propagation in biological tissue,” J. Opt. Soc. Am. A 21, 797-803 (2004). [CrossRef]
  35. A. D. Kim and M. Moscoso, “Chebyshev spectral method for radiative transfer,” SIAM J. Sci. Comput. (USA) 23, 2074-2094 (2002). [CrossRef]
  36. B. Davison, Neutron Transport Theory (Oxford Univ. Press, 1957).
  37. Carl Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, 2001).
  38. A. Ishimaru, Wave Propagation and Scattering in Random Media, I (Academic, 1978).
  39. L. Wang and S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A 10, 1746-1752 (1993). [CrossRef]
  40. http://omlc.ogi.edu/calc/mie_calc.html (August 2009).
  41. L. F. A. Douven and G. W. Lucassen, “Retrieval of optical properties of skin from measurement and modelling the diffuse reflectance,” Proc. SPIE 3914, 312-323 (2000). [CrossRef]
  42. http://omlc.ogi.edu/news/jan98/skinoptics.html (August 2009).
  43. S. L. Jacques, “Origins of tissue optical properties in the uva, visible, and nir regions,” in OSA TOPS Advances in Optical Imaging and Photon Migration, Vol. 2, R.R.Alfano and JamesG.Fujimoto, eds. (Optical Society of America, 1996), pp. 364-371.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited