OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 2172–2180

Phase retrieval from a high-numerical-aperture intensity distribution by use of an aperture-array filter

Nobuharu Nakajima  »View Author Affiliations

JOSA A, Vol. 26, Issue 10, pp. 2172-2180 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (522 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Almost all noninterferometric phase-retrieval methods used in coherent diffractive imaging have been based on the measurement system with low numerical aperture, in which Fresnel or Fraunhofer approximation is valid to express the wave propagation between an object and a detector. In microscopy, which is a typical application of coherent diffractive imaging, the measurement of the diffraction intensity with high numerical aperture is required for object reconstruction at high spatial resolution. We here propose an extension procedure to apply the previous phase-retrieval method using an aperture-array filter [ J. Opt. Soc. Am. A 25, 742 (2008) ] to the system with high numerical aperture, in which the first Rayleigh–Sommerfeld integral for spherical waves is utilized instead of the Fresnel integral for parabolic waves. Computer-simulated examples in the high-numerical-aperture system demonstrate object reconstruction at high lateral resolution and retrieval of information in the depth direction of an object.

© 2009 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.5070) Image processing : Phase retrieval

ToC Category:
Image Processing

Original Manuscript: March 26, 2009
Revised Manuscript: July 31, 2009
Manuscript Accepted: July 31, 2009
Published: September 9, 2009

Nobuharu Nakajima, "Phase retrieval from a high-numerical-aperture intensity distribution by use of an aperture-array filter," J. Opt. Soc. Am. A 26, 2172-2180 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Yamazaki, Y. Kohmura, T. Sakurai, and T. Ishikawa, “Reconstruction of complex-valued electron density with x-ray in-line holograms,” J. Opt. Soc. Am. A 23, 3171-3176 (2006). [CrossRef]
  2. A. Morlens, J. Gautier, G. Rey, P. Zeitoun, J. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Cassou, and M. Fajardo, “Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics,” Opt. Lett. 31, 3095-3097 (2006). [CrossRef] [PubMed]
  3. A. Rosenhahn, R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, and M. Grunze, “Digital in-line soft x-ray holography with element contrast,” J. Opt. Soc. Am. A 25, 416-422 (2008). [CrossRef]
  4. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöohr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature (London) 432, 885-888 (2004). [CrossRef]
  5. S. G. Podorov, K. M. Pavlov, and D. M. Paganin, “A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging,” Opt. Express 15, 9954-9962 (2007). [CrossRef] [PubMed]
  6. M. Guizar-Sicairos and J. R. Fienup, “Holography with extended reference by autocorrelation linear differential operation,” Opt. Express 15, 17592-17612 (2007). [CrossRef] [PubMed]
  7. S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. N. Chapman, M. Frank, S. P. Hau-riege, A. Szöke, C. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu, and M. M. Seibert, “Massively parallel X-ray holography,” Nat. Photonics 2, 560-563 (2008). [CrossRef]
  8. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  9. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with Fourier-weighted projections,” J. Opt. Soc. Am. A 25, 701-709 (2008). [CrossRef]
  10. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004). [CrossRef] [PubMed]
  11. M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. 73, 1434-1441 (1983). [CrossRef]
  12. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932-1941 (1995). [CrossRef]
  13. K. A. Nugent, D. Paganin, and T. E. Gureyev, “A phase odyssey,” Phys. Today 54, 27-32 (2001). [CrossRef]
  14. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline speciments,” Nature (London) 400, 342-344 (1999). [CrossRef]
  15. H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. P. Hau-Riege, C. Cui, M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz, C. Jacobsen, and D. Shapiro, “High-resolution ab initio three-dimensional x-ray diffraction microscopy,” J. Opt. Soc. Am. A 23, 1179-1200 (2006). [CrossRef]
  16. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007). [CrossRef] [PubMed]
  17. Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, “Three-dimensional visualization of a human chromosome using coherent x-ray diffraction,” Phys. Rev. Lett. 102, 018101 (2009). [CrossRef] [PubMed]
  18. B. E. Allman, P. J. McMahon, J. B. Tiller, K. A. Nugent, D. Paganin, A. Barty, I. MacNulty, S. P. Frigo, Y. Wang, and C. C. Retsch, “Noninterferometric quantitative phase imaging with soft x rays,” J. Opt. Soc. Am. A 17, 1732-1743 (2000). [CrossRef]
  19. T. E. Gureyev, S. Nayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multi-energy x rays,” Phys. Rev. Lett. 86, 5827-5830 (2001). [CrossRef] [PubMed]
  20. N. Nakajima, “Noniterative phase retrieval from a single diffraction intensity pattern by use of an aperture array,” Phys. Rev. Lett. 98, 223901 (2007). [CrossRef] [PubMed]
  21. N. Nakajima, “Lensless coherent imaging by a deterministic phase retrieval method with an aperture-array filter,” J. Opt. Soc. Am. A 25, 742-750 (2008). [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  23. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  24. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857-867 (1998). [CrossRef]
  25. N. Nakajima, “Phase retrieval using the properties of entire functions,” in Advances in Imaging and Electron Physics, P.W.Hawkes, ed., Vol. 93 (Academic, 1995). [CrossRef]
  26. N. Nakajima, “Improvement of resolution for phase retrieval by use of a scanning slit,” Appl. Opt. 45, 5976-5983 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited