OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 2206–2210

Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation

Juan Tabernero and Frank Schaeffel  »View Author Affiliations

JOSA A, Vol. 26, Issue 10, pp. 2206-2210 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new device was designed to provide fast measurements (4 s) of the peripheral refraction (90° central horizontal field). Almost-continuous traces are obtained with high angular resolution (0.4°) while the subject is fixating a central stimulus. Three-dimensional profiles can also be measured. The peripheral refractions in 10 emmetropic subjects were studied as a function of accommodation (200 cm, 50 cm, and 25 cm viewing distances). Peripheral refraction profiles were largely preserved during accommodation but were different in each individual. Apparently, the accommodating lens changes its focal length evenly over the central 90° of the visual field.

© 2009 Optical Society of America

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7322) Vision, color, and visual optics : Visual optics, accommodation
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: July 8, 2009
Revised Manuscript: August 21, 2009
Manuscript Accepted: August 21, 2009
Published: September 21, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics
October 8, 2009 Spotlight on Optics

Juan Tabernero and Frank Schaeffel, "Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation," J. Opt. Soc. Am. A 26, 2206-2210 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004). [CrossRef] [PubMed]
  2. E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005). [CrossRef]
  3. F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the Skiagram,” Ophthalmologica 162, 1-10 (1971). [CrossRef] [PubMed]
  4. L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008). [CrossRef]
  5. M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691-695 (1981). [PubMed]
  6. D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).
  7. N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004). [CrossRef]
  8. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450-1458 (2006). [CrossRef]
  9. A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207-217 (1999). [CrossRef] [PubMed]
  10. L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005) [CrossRef] [PubMed]
  11. A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33, 865-863 (2008). [CrossRef]
  12. D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Validation of aberrometry-based relative peripheral refraction measurements,” Ophthalmic Physiol. Opt. 28, 83-90 (2008). [CrossRef] [PubMed]
  13. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363-2373 (2002). [CrossRef]
  14. R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46, 3935-3940 (2006). [CrossRef] [PubMed]
  15. J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Invest. Ophthalmol. Visual Sci. 50, 4516-4522 (2009). [CrossRef]
  16. J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).
  17. J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004). [CrossRef]
  18. F. Schaeffel, L. Farkas, and H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 26, 1505-1509 (1987). [CrossRef] [PubMed]
  19. J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009). [CrossRef] [PubMed]
  20. M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000). [CrossRef]
  21. R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  22. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881-1891 (1999). [CrossRef]
  23. G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71, 119-125 (1988). [CrossRef]
  24. R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007). [CrossRef] [PubMed]
  25. L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthamol. 93, 1186-1190 (2009). [CrossRef]
  26. L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1-11 (2009). [CrossRef]
  27. T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vision Sci. 79, 424-430 (2002). [CrossRef]
  28. A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited