OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 2226–2234

Subwavelength electromagnetic near-field imaging of point dipole with metamaterial nanoslab

Timo Hakkarainen, Tero Setälä, and Ari T. Friberg  »View Author Affiliations


JOSA A, Vol. 26, Issue 10, pp. 2226-2234 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002226


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate near-field imaging of a point dipole by a lossy, nanoscale metamaterial slab. Making use of the electromagnetic angular-spectrum representation, we derive the Green tensor for the field transmission through the metamaterial slab, duly considering multiple reflections, polarizations, and wave-vector signs. With this general formalism, we calculate the point-spread function of the imaging system, which enables us to assess, for instance, resolution and image brightness. Our results demonstrate that with the metamaterial-slab lens one achieves resolution beyond the conventional diffraction limit of half the wavelength. In general, the resolution and image brightness are degraded when the slab thickness and absorption increase, but we show that in some cases the resolution is rather insensitive to the magnitude of the losses in the metamaterial.

© 2009 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: June 26, 2009
Manuscript Accepted: August 14, 2009
Published: September 25, 2009

Citation
Timo Hakkarainen, Tero Setälä, and Ari T. Friberg, "Subwavelength electromagnetic near-field imaging of point dipole with metamaterial nanoslab," J. Opt. Soc. Am. A 26, 2226-2234 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-10-2226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, 2008).
  2. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford Univ. Press, 2009).
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  5. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1981).
  6. D. R. Smith, D. Shurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  7. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  8. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255-270 (2005). [CrossRef]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  10. S. A. Ramakrishna and O. J. F. Martin, “Resolving the wave vector in negative refractive index media,” Opt. Lett. 30, 2626-2628 (2005). This paper contains a mathematical error in mapping the second Rieman sheet. When calculating the complex square root, one can use either two Rieman sheets or +/- sign in one Rieman sheet, but not both. However, the physical conclusions in Fig. are correct. [CrossRef] [PubMed]
  11. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316 (2004). [CrossRef]
  12. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
  13. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481-489 (1987). [CrossRef]
  14. G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230-242 (1975). [CrossRef]
  15. J. B. Pendry, “Reply to 'Comment on “Negative refraction makes a perfect lens,”'” Phys. Rev. Lett. 87, 249702 (2001). [CrossRef]
  16. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).
  17. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  18. L. S. Froute-Pérez and R. Carminati,“Controlling the fluorescence lifetime of a single emitter on the nanoscale using a plasmonic superlens,” Phys. Rev. B 78, 125403 (2008). [CrossRef]
  19. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  20. A. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited