OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 10 — Oct. 1, 2009
  • pp: 2269–2274

Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing

Masato Miura, Kouichi Nitta, and Osamu Matoba  »View Author Affiliations


JOSA A, Vol. 26, Issue 10, pp. 2269-2274 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002269


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Maximum storage capacity in a reflection-type holographic memory with three-dimensional speckle shift multiplexing is investigated numerically. An explicit expression of storage capacity is derived on the basis of interpage crosstalk noise. We fabricate a simulator to evaluate reflection-type holographic data storage by calculating wave propagation, recording a hologram, and reconstruction by scalar diffraction. We calculate the properties of the resultant diffraction efficiency, that is the noise, at the first null in the speckle-shift multiplexing. Numerical results indicate that the storage capacity is proportional to the numerical aperture to the fourth power and to the volume of the recording medium and is inversely proportional to the wavelength to the third power. Achievable storage capacity is discussed.

© 2009 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Optical Data Storage

History
Original Manuscript: May 19, 2009
Revised Manuscript: August 23, 2009
Manuscript Accepted: August 27, 2009
Published: September 28, 2009

Citation
Masato Miura, Kouichi Nitta, and Osamu Matoba, "Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing," J. Opt. Soc. Am. A 26, 2269-2274 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-10-2269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).
  2. L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004). [CrossRef]
  3. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004). [CrossRef] [PubMed]
  4. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006). [CrossRef] [PubMed]
  5. O. Matoba, Y. Yokohama, M. Miura, K. Nitta, and T. Yoshimura, “Reflection-type holographic disk memory with random phase shift multiplexing,” Appl. Opt. 45, 3270-3274 (2006). [CrossRef] [PubMed]
  6. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording,” Appl. Opt. 46, 1460-1466 (2007). [CrossRef] [PubMed]
  7. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Image-based numerical evaluation techniques in volume holographic memory systems,” J. Opt. Soc. Am. B 24, 792-798 (2007). [CrossRef]
  8. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Speckle shift multiplexing along axial direction in reflection-type holographic memory,” Jpn. J. Appl. Phys. 46, 3832-3836 (2007). [CrossRef]
  9. F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.
  10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  11. C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978-1983 (1992). [CrossRef]
  12. N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005). [CrossRef]
  13. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005). [CrossRef]
  14. B. Gombkoto, P. Koppa, A. Suto, and E. Lorincz, “Computer simulation of reflective volume grating holographic data storage,” J. Opt. Soc. Am. A 24, 2075-2081 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited