OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2275–2281

On a class of electromagnetic diffraction-free beams

Riccardo Borghi, Franco Gori, and Sergey A. Ponomarenko  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. 2275-2281 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a general theory of electromagnetic diffraction-free beams composed of uncorrelated Bessel modes. Our approach is based on the direct application of the nonnegativity constraint to the cross-spectral density tensor describing the electromagnetic field distribution. The field correlation properties are most conveniently derived in the spatial frequency domain, where the angular spectrum takes on the form of an infinitely thin ring. We also present several examples, including a vector generalization of the recently introduced dark and antidark diffraction-free beams.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: July 16, 2009
Manuscript Accepted: September 9, 2009
Published: October 5, 2009

Riccardo Borghi, Franco Gori, and Sergey A. Ponomarenko, "On a class of electromagnetic diffraction-free beams," J. Opt. Soc. Am. A 26, 2275-2281 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microwaves Opt. Acoust. 2, 105-112 (1978). [CrossRef]
  2. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1502 (1987). [CrossRef] [PubMed]
  3. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150-152 (1989). [CrossRef]
  4. R. W. Ziolkowski, I. M. Besieris, and A. M. Shaarawi, “Aperture realizations of exact solutions to homogeneous wave equations,” J. Opt. Soc. Am. A 10, 75-87 (1993). [CrossRef]
  5. H. Sonajalg, M. Ratsep, and P. Saari, “Demonstrations of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium,” Opt. Lett. 22, 310-312 (1997). [CrossRef] [PubMed]
  6. M. A. Porras, “Diffraction-free and dispersion-free pulsed beam propagation in dispersive media,” Opt. Lett. 26, 1364-1366 (2001). [CrossRef]
  7. D. N. Christodoulides, N. K. Efremidis, P. Di Trapani, and B. A. Malomed, “Bessel X-waves in two- and three-dimensional bidispersive optical systems,” Opt. Lett. 29, 1446-1448 (2004). [CrossRef] [PubMed]
  8. S. A. Ponomarenko and G. P. Agrawal, “Linear optical bullets,” Opt. Commun. 261, 1-4 (2006). [CrossRef]
  9. J. Turunen, A. Vasara, and A. T. Friberg, “Propagation invariance and self-imaging in variable coherence optics,” J. Opt. Soc. Am. A 8, 282-289 (1991). [CrossRef]
  10. M. W. Kowarz and G. S. Agarwal, “Bessel-beam respresentation for partially coherent fields,” J. Opt. Soc. Am. A 12, 1324-1330 (1995). [CrossRef]
  11. S. A. Ponomarenko, W. Huang, and M. Cada, “Dark and antidark diffraction-free beams,” Opt. Lett. 32, 2508-2510 (2007). [CrossRef] [PubMed]
  12. H. T. Eyyuboglu, Y. Baykal, E. Sermutlu, Y. Cai, and O. Korotkova, “Intensity fluctuations in J-Bessel-Gaussian beams of all orders propagating in turbulent atmosphere,” Appl. Phys. B 93, 605-611 (2008). [CrossRef]
  13. Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998). [CrossRef]
  14. D. G. Hall, “Vector-beam solutions of Maxwell's wave equation,” Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  15. J. Tervo, P. Vahimaa, and J. Turunen, “On propagation invariant and self-imaging intensity distributions of electromagnetic fields,” J. Mod. Opt. 49, 1537-1543 (2002). [CrossRef]
  16. J. Tervo, “Azimuthal polarization and partial coherence,” J. Opt. Soc. Am. A 20, 1974-1980 (2003). [CrossRef]
  17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  18. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge Univ. Press, 2007).
  19. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part 1. Spectra and cross-spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343-351 (1982). [CrossRef]
  20. F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301-305 (1980). [CrossRef]
  21. F. Gori, G. Guattari, and C. Padovani, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun. 64, 311-316 (1987). [CrossRef]
  22. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal mode spectrum,” J. Opt. Soc. Am. A 10, 2008-2016 (1993). [CrossRef]
  23. S. A. Ponomarenko, “A class of partially coherent beams carrying optical vortices,” J. Opt. Soc. Am. A 18, 150-156 (2001). [CrossRef]
  24. F. Gori, M. Santarsiero, R. Borghi, and Chun-Fang Li, “Partially correlated thin annular sources: the scalar case,” J. Opt. Soc. Am. A 25, 2826-2832 (2008). [CrossRef]
  25. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23, 241-243 (1998). [CrossRef]
  26. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarisation matrix,” J. Opt. A, Pure Appl. Opt. 7, 941-951 (1998).
  27. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641-1643 (1994). [CrossRef]
  28. E. Wolf, “Unified theory of coherence and polarization,” Phys. Lett. A 312, 263-267 (2003). [CrossRef]
  29. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  30. F. Gori, M. Santarsiero, R. Simon, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78-84 (2003). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999).
  32. E. Wolf, “Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?” Opt. Lett. 33, 642-644 (2008). [CrossRef] [PubMed]
  33. F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68, 239-243 (1988). [CrossRef]
  34. S. A. Ponomarenko and G. P. Agrawal, “Asymmetric incoherent vector solitons,” Phys. Rev. E 69, 036604 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited