OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2321–2326

Analytical modal analysis of bent slot waveguides

Kirankumar R. Hiremath  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. 2321-2326 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze modal properties of dielectric optical bent slot waveguides by using the multilayer formulation of the well-known classical analytical model of bent waveguides based on the Bessel–Hankel functions. Unlike the previously studied approximate model based on the Airy functions, this model is valid for all values of bend radii. The present approach allows quick and accurate computations of propagation constants, mode profiles, and field-power densities for the 2D bent slot waveguides with very small radii. Using this model we characterize the optimal slot position inside the bent core to maximize the field enhancement in the slot. Such modal analysis is quite useful for the design of devices involving bent slot waveguides. Moreover the results obtained by the present 2D rigorous analytical model can also be used for benchmarking other numerical tools.

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: July 8, 2009
Revised Manuscript: September 8, 2009
Manuscript Accepted: September 11, 2009
Published: October 9, 2009

Kirankumar R. Hiremath, "Analytical modal analysis of bent slot waveguides," J. Opt. Soc. Am. A 26, 2321-2326 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, Q. Xu, C. A. Barios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  2. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14, 9197-9202 (2006). [CrossRef] [PubMed]
  3. N.-N. Feng, J. Michel, and L. C. Kimerling, “Optical field concentration in low-index waveguides,” IEEE J. Quantum Electron. 42, 885-890 (2006). [CrossRef]
  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216-219 (2009). [CrossRef]
  5. C.-Y. Chao, “Simple and effective calculation of modal properties of bent slot waveguides,” J. Opt. Soc. Am. B 24, 2373-2377 (2007). [CrossRef]
  6. J. Lu, S. He, and V. G. Romanov, “A simple and effective method for calculating the bending loss and phase enhancement of a bent planar waveguide,” Fiber Integr. Opt. 24, 25-26 (2005). [CrossRef]
  7. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103-2132 (1969).
  8. L. Lewin, D. C. Chang, and E. F. Kuester, Electromagnetic Waves and Curved Structures (Peter Peregrinus, 1977).
  9. S. Kawakami, M. Miyagi, and S. Nishida, “Bending losses of dielectric slab optical waveguide with double or multiple claddings: theory,” Appl. Opt. 14, 2588-2597 (1975). [CrossRef] [PubMed]
  10. E. C. M. Pennings, “Bends in optical ridge waveguides, modelling and experiment,” Ph.D. thesis (Delft University, The Netherlands, 1990).
  11. K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and J. Čtyroký, “Analytic approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37-61 (2005). [CrossRef]
  12. J. S. Gu, P. A. Besse, and H. Melchior, “Method of lines for the analysis of the propagation characteristics of curved optical rib waveguides,” IEEE J. Quantum Electron. 27, 531-537 (1991). [CrossRef]
  13. W. Pascher and R. Pregla, “Vectorial analysis of bends in optical strip waveguides by the method of lines,” Radio Sci. 28, 1229-1233 (1993). [CrossRef]
  14. L. Prkna, M. Hubálek, and J. Čtyroký, “Vectorial eigenmode solver for bent waveguides based on mode matching,” IEEE Photon. Technol. Lett. 16, 2057-2059 (2004). [CrossRef]
  15. L. Prkna, M. Hubálek, and J. Čtyroký, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11, 217-223 (2005). [CrossRef]
  16. W. Pascher, “Modelling of rib waveguide bends for sensor applications,” Opt. Quantum Electron. 33, 433-449 (2001). [CrossRef]
  17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D. C., 1964).
  18. D. E. Amos, “A portable package for Bessel functions of a complex argument and nonnegative order,” (1983). Http://www.netlib.org/amos/.
  19. T.Tamir (editor), Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, 1982).
  20. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86, 081101:1-3 (2005). [CrossRef]
  21. K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory,” Opt. Commun. 257, 277-297 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited