OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2353–2361

Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation

Teng Cheng, Qingchuan Zhang, Binbin Jiao, Dapeng Chen, and Xiaoping Wu  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. 2353-2361 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The authors’s group proposed an optical-readout uncooled infrared detector. Primarily because of the bilayer structure of the usual such detector, deformation of the reflector is often unavoidable and seriously degrades the optical readout sensitivity. According to the theoretical analysis and experimental validation, an optical solution to this problem was established, and it was found that for the specific curvature radius, there are many characteristic reflector lengths and filter positions corresponding to the sensitivity peaks. When employing this solution, the sensitivity loss induced by the deformed reflector would be reduced to a minimum level. The strategy of this solution may also be suitable for other micromechanical devices that experience the same problem.

© 2009 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(230.4685) Optical devices : Optical microelectromechanical devices
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Optical Devices

Original Manuscript: July 17, 2009
Manuscript Accepted: September 8, 2009
Published: October 15, 2009

Teng Cheng, Qingchuan Zhang, Binbin Jiao, Dapeng Chen, and Xiaoping Wu, "Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation," J. Opt. Soc. Am. A 26, 2353-2361 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).
  2. J. L. Miller, Principles of Infrared Technology (Van Nostram Reinhold, 1994).
  3. R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998). [CrossRef]
  4. R. S. Balcerak, “Uncooled IR imaging: technology for the next generation,” Proc. SPIE 3698, 110-118 (1999). [CrossRef]
  5. J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994). [CrossRef]
  6. J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994). [CrossRef]
  7. J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997). [CrossRef]
  8. D. Sarid, Scanning Force Microscopy (Oxford Univ. Press, 1991).
  9. H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998). [CrossRef]
  10. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “160×120 pixels optically readable bimaterial infrared detector,” in The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 578-581.
  11. T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999). [CrossRef]
  12. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002). [CrossRef]
  13. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004). [CrossRef]
  14. D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006). [CrossRef]
  15. Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003). [CrossRef]
  16. L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).
  17. C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006). [CrossRef]
  18. Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007). [CrossRef] [PubMed]
  19. F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008). [CrossRef]
  20. D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008). [CrossRef]
  21. Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007). [CrossRef] [PubMed]
  22. T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008). [CrossRef]
  23. T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009). [CrossRef]
  24. R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006). [CrossRef]
  25. F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited