OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2459–2465

Definition and invariance properties of the complex degree of spatial coherence

Román Castañeda, Juan Carrasquilla, and Jorge Garcia-Sucerquia  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. 2459-2465 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Within the framework of the phase-space representation of random electromagnetic fields provided by electromagnetic spatial coherence wavelets, and by using the Fresnel–Arago laws for interference and polarization as an analysis tool, the meaning of the spatial coherence-polarization tensor and its invariance under transformations is studied. The results give new insight into the definition and properties of the complex degree of spatial coherence by showing that its invariance is not required for properly describing the behavior of random electromagnetic fields within the scope of physically measurable quantities.

© 2009 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: June 4, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: September 18, 2009
Published: October 27, 2009

Román Castañeda, Juan Carrasquilla, and Jorge Garcia-Sucerquia, "Definition and invariance properties of the complex degree of spatial coherence," J. Opt. Soc. Am. A 26, 2459-2465 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137-1143 (2003). [CrossRef] [PubMed]
  2. O. Korotkova and E. Wolf, “Spectral degree of coherence of a random three-dimensional electromagnetic field,” J. Opt. Soc. Am. A 21, 2382-2385 (2004). [CrossRef]
  3. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051-6060 (2005). [CrossRef] [PubMed]
  4. G. S. Agarwal, A. Dogariu, T. D. Visser, and E. Wolf, “Generation of complete coherence in Young's interference experiment with random mutually uncorrelated electromagnetic beams,” Opt. Lett. 30, 120-122 (2005). [CrossRef] [PubMed]
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).
  6. M. R. Dennis, “A three-dimensional degree of polarization based on Rayleigh scattering,” J. Opt. Soc. Am. A 24, 2065-2069 (2007). [CrossRef]
  7. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J.: Appl. Phys. 40, 1-47 (2007). [CrossRef]
  8. R. Castañeda, R. Betancur, J. Herrera, and J. Carrasquilla, “Phase-space representation and polarization domains of random electromagnetic fields,” Appl. Opt. 47, E27-E38 (2008). [CrossRef] [PubMed]
  9. R. Castañeda and J. Garcia-Sucerquia, “Electromagnetic spatial coherence wavelets,” J. Opt. Soc. Am. A 23, 81-90 (2006). [CrossRef]
  10. M. Mujat, A. Dogariu, and E. Wolf, “A law of interference of electromagnetic beams of any state of coherence and polarization and the Fresnel-Arago interference laws,” J. Opt. Soc. Am. A 21, 2414-2417 (2004). [CrossRef]
  11. R. Castañeda, “Electromagnetic spatial coherence wavelets and the classical laws on polarization,” Opt. Commun. 267, 4-13 (2006). [CrossRef]
  12. R. Castañeda, J. Carrasquilla, and J. Garcia, “Young's experiment with electromagnetic spatial coherence wavelets,” J. Opt. Soc. Am. A 23, 2519-2529 (2006). [CrossRef]
  13. T. Setälä, J,. . Tervo, and A. T. Friberg, “Stokes parameters and polarization contrasts in Young's interference experiment,” Opt. Lett. 31, 2208-2210 (2006). [CrossRef] [PubMed]
  14. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge Univ. Press, 2007).
  15. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
  16. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263-267 (2003). [CrossRef]
  17. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, 1985).
  18. D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles (Wiley Interscience, 1975).
  19. R. Betancur and R. Castañeda, “Spatial coherence modulation,” J. Opt. Soc. Am. A 26, 147-155 (2009). [CrossRef]
  20. R. Shankar, Principles of Quantum Mechanics (Plenum, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited