OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: 2470–2479

Focusing of spatially inhomogeneous partially coherent, partially polarized electromagnetic fields

Matthew R. Foreman and Peter Török  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. 2470-2479 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a general framework capable of describing the focusing of electromagnetic waves with spatially varying coherence and polarization properties in optical systems of arbitrary numerical aperture and Fresnel number. We also investigate the reduction of the dimensionality of the requisite integrals by use of a coherent mode expansion. We find that coherent mode expansions treating each component of the electric field vector individually are unsuitable for describing focusing systems because of the inter-component mixing that can occur in high numerical aperture systems. In addition, we show that the assumption of harmonic angular dependence allows the azimuthal integration to be performed analytically, providing further simplification of the analysis. We also find that the effective degree of spectral coherence of an electromagnetic beam is unchanged upon focusing. Finally, as an illustration of the developed framework, we calculate the transverse and axial focal distributions for a partially coherent source formed by incoherent superposition of radially and azimuthally polarized Laguerre–Gauss modes.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.5430) Physical optics : Polarization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: July 17, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: September 22, 2009
Published: October 30, 2009

Matthew R. Foreman and Peter Török, "Focusing of spatially inhomogeneous partially coherent, partially polarized electromagnetic fields," J. Opt. Soc. Am. A 26, 2470-2479 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Stamnes, Waves in Focal Regions (Adam Hilger, 1986).
  2. V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” Trans. Opt. Inst. Pet. 1, 1-36 (1919).
  3. V. S. Ignatowsky, “The relationship between geometrical and wave optics and diffraction of homocentrical beams,” Trans. Opt. Inst. Pet. 1, 1-30 (1920).
  4. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349-357 (1959). [CrossRef]
  5. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  6. W. Wang, A. Friberg, and E. Wolf, “Focusing of partially coherent light in systems of large Fresnel numbers,” J. Opt. Soc. Am. A 14, 491-496 (1997). [CrossRef]
  7. D. Fischer and T. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097-2102 (2004). [CrossRef]
  8. C. Rydberg, “First- and second-order statistics of partially coherent, high-numerical-aperture optical fields,” Opt. Lett. 33, 104-106 (2008). [CrossRef] [PubMed]
  9. X. Liu and J. Pu, “Focal shift and focal switch of partially coherent light in dual-focus systems,” Opt. Commun. 252, 262-267 (2005). [CrossRef]
  10. K. Lindfors, T. Setälä, M. Kaivola, and A. Friberg, “Degree of polarization in tightly focused optical fields,” J. Opt. Soc. Am. A 22, 561-568 (2005). [CrossRef]
  11. Z. Zhang, J. Pu, and X. Wang, “Focusing of partially coherent Bessel-Gaussian beams through a high-numerical-aperture objective,” Opt. Lett. 33, 49-51 (2008). [CrossRef]
  12. T. van Dijk, G. Gbur, and T. Visser, “Shaping the focal intensity distribution using spatial coherence,” J. Opt. Soc. Am. A 25, 575-581 (2008). [CrossRef]
  13. R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680-02701 (1987). [CrossRef]
  14. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057-1060 (1984). [CrossRef]
  15. W. Gao, “Effects of coherence and vector properties of the light on the resolution limit in stimulated emission depletion fluorescence microscopy,” J. Opt. Soc. Am. A 25, 1378-1382 (2008). [CrossRef]
  16. P. Török, “Focusing of electromagnetic waves through a dielectric interface by lenses of finite Fresnel number,” J. Opt. Soc. Am. A 15, 3009-3015 (1998). [CrossRef]
  17. J. W. Goodman, Statistical Optics (Wiley, 2000).
  18. N. Wiener, “Coherency matrices and quantum theory,” J. Math. Phys. 7, 109-125 (1928).
  19. N. Wiener, “Harmonic analysis and the quantum theory,” J. Franklin Inst. 207, 525-553 (1929). [CrossRef]
  20. E. Wolf, “Coherence properties of partially polarized electromagnetic radiation,” Nuovo Cimento 13, 1165-1181 (1959). [CrossRef]
  21. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge Univ. Press, 2007).
  22. P. Török, P. Varga, Z. Laczik, and G. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  23. P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148, 300-315 (1998). [CrossRef]
  24. D. J. Innes and A. L. Bloom, “Design of optical systems for use with laser beams,” Spectra-Phys. Laser Tech. Bull. 5, 1-10 (1966).
  25. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343-351 (1982). [CrossRef]
  26. C. Palma and G. Cincotti, “Imaging of J0 correlated Bessel-Gauss beams,” IEEE J. Quantum Electron. 33, 1032-1040 (1997). [CrossRef]
  27. S. Flewett, H. Quiney, C. Tran, and K. Nugent, “Extracting coherent modes from partially coherent wavefields,” Opt. Lett. 34, 2198-2200 (2009). [CrossRef] [PubMed]
  28. K. Karhunen, “Über lineare Methoden in der Wahrscheinlichkeitsrechnung,” Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys. A137, 1-79 (1947).
  29. M. Loève, Probability Theory, 4th ed. (Springer-Verlag, 1978).
  30. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources,” J. Opt. Soc. Am. A 20, 78-84 (2003). [CrossRef]
  31. J. Tervo, T. Setälä, and A. Friberg, “Theory of partially coherent electromagnetic fields in the space-frequency domain,” J. Opt. Soc. Am. A 21, 2205-2215 (2004). [CrossRef]
  32. D. P. Brown, A. K. Spilman, T. G. Brown, R. Borghi, S. N. Volkov, and E. Wolf, “Spatial coherence properties of azimuthally polarized laser modes,” Opt. Commun. 281, 5287-5290 (2008). [CrossRef]
  33. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge Univ. Press, 1995).
  34. R. Dorn, S. Quabis and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  35. G. Guattari, C. Palma, and C. Padovani, “Cross-spectral densities with axial symmetry,” Opt. Commun. 73, 173-178 (1989). [CrossRef]
  36. P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605-3617 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited