OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: B25–B42

The relationship between optimal and biologically plausible decoding of stimulus velocity in the retina

Edmund C. Lalor, Yashar Ahmadian, and Liam Paninski  »View Author Affiliations


JOSA A, Vol. 26, Issue 11, pp. B25-B42 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000B25


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A major open problem in systems neuroscience is to understand the relationship between behavior and the detailed spiking properties of neural populations. We assess how faithfully velocity information can be decoded from a population of spiking model retinal neurons whose spatiotemporal receptive fields and ensemble spike train dynamics are closely matched to real data. We describe how to compute the optimal Bayesian estimate of image velocity given the population spike train response and show that, in the case of global translation of an image with known intensity profile, on average the spike train ensemble signals speed with a fractional standard deviation of about 2% across a specific set of stimulus conditions. We further show how to compute the Bayesian velocity estimate in the case where we only have some a priori information about the (naturalistic) spatial correlation structure of the image but do not know the image explicitly. As expected, the performance of the Bayesian decoder is shown to be less accurate with decreasing prior image information. There turns out to be a close mathematical connection between a biologically plausible “motion energy” method for decoding the velocity and the Bayesian decoder in the case that the image is not known. Simulations using the motion energy method and the Bayesian decoder with unknown image reveal that they result in fractional standard deviations of 10% and 6%, respectively, across the same set of stimulus conditions. Estimation performance is rather insensitive to the details of the precise receptive field location, correlated activity between cells, and spike timing.

© 2009 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4150) Vision, color, and visual optics : Motion detection

History
Original Manuscript: January 30, 2009
Revised Manuscript: June 14, 2009
Manuscript Accepted: July 23, 2009
Published: September 11, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Edmund C. Lalor, Yashar Ahmadian, and Liam Paninski, "The relationship between optimal and biologically plausible decoding of stimulus velocity in the retina," J. Opt. Soc. Am. A 26, B25-B42 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-11-B25

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited