OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 11 — Nov. 1, 2009
  • pp: B94–B109

Pattern recognition in correlated and uncorrelated noise

Brianna Conrey and Jason M. Gold  »View Author Affiliations


JOSA A, Vol. 26, Issue 11, pp. B94-B109 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000B94


View Full Text Article

Enhanced HTML    Acrobat PDF (1644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study examined how correlated, or filtered, noise affected efficiency for recognizing two types of signal patterns, Gabor patches and three-dimensional objects. In general, compared with the ideal observer, human observers were most efficient at performing tasks in low-pass noise, followed by white noise; they were least efficient in high-pass noise. Simulations demonstrated that contrast-dependent internal noise was likely to have limited human performance in the high-pass conditions for both signal types. Classification images showed that observers were likely adopting different strategies in the presence of low-pass versus white noise. However, efficiencies were underpredicted by the linear classification images and asymmetries were present in the classification subimages, indicating the influence of nonlinear processes. Response consistency analyses indicated that lower contrast-dependent internal noise contributed somewhat to higher efficiencies in low-pass noise for Gabor patches but not objects. Taken together, the results of these experiments suggest a complex interaction among signals, external noise spectra, and internal noise in determining efficiency in correlated and uncorrelated noise.

© 2009 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.5510) Vision, color, and visual optics : Psychophysics

History
Original Manuscript: April 1, 2009
Revised Manuscript: August 14, 2009
Manuscript Accepted: September 8, 2009
Published: October 15, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Brianna Conrey and Jason M. Gold, "Pattern recognition in correlated and uncorrelated noise," J. Opt. Soc. Am. A 26, B94-B109 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-11-B94


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Hecht, S. Schlaer, and M. H. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol. 25, 819-840 (1942). [CrossRef] [PubMed]
  2. Z. Liu, D. C. Knill, and D. Kersten, “Object classification for human and ideal observers,” Vision Res. 35, 549-568 (1995). [CrossRef] [PubMed]
  3. J. Gold, P. J. Bennett, and A. B. Sekuler, “Identification of band-pass filtered letters and faces by human and ideal observers,” Vision Res. 39, 3537-3560 (1999). [CrossRef]
  4. J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395-397 (1994). [CrossRef] [PubMed]
  5. B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995). [CrossRef] [PubMed]
  6. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966).
  7. W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267-314 (1989). [CrossRef] [PubMed]
  8. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981). [CrossRef] [PubMed]
  9. C. Olman and D. Kersten, “Classification objects, ideal observers & generative models,” Cogn. Sci. 28, 227-239 (2004). [CrossRef]
  10. A. B. Watson, “The ideal observer concept as a modeling tool,” in Frontiers of Visual Science, The Committee on Vision, ed. (National Academy Press, 1978), pp. 32-37.
  11. A. B. Watson, H. B. Barlow, and J. G. Robson, “What does the eye see best,” Nature 302, 419-422 (1983). [CrossRef] [PubMed]
  12. G. J. Burton and I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157-170 (1987). [CrossRef] [PubMed]
  13. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987). [CrossRef] [PubMed]
  14. D. L. Ruderman and W. Bialek, “Statistics of natural images--scaling in the woods,” Phys. Rev. Lett. 73, 814-817 (1994). [CrossRef] [PubMed]
  15. D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Appl. Opt. 12, 229-232 (1992).
  16. A. vanderSchaaf and J. H. vanHateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36, 2759-2770 (1996). [CrossRef]
  17. C. Blakemore and F. W. Campbell, “On existence of neurones in human visual system selectively sensitive to orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).
  18. N. V. S. Graham, Visual Pattern Analyzers, Oxford Psychology Series, No. 16 (Oxford Univ. Press, 1989), pp. xvi, 646.
  19. D. J. Field and N. Brady, “Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367-3383 (1997). [CrossRef]
  20. D. Kersten, “Statistical efficiency for the detection of visual noise,” Vision Res. 27, 1029-1040 (1987). [CrossRef] [PubMed]
  21. D. M. Levi, S. A. Klein, and I. N. Chen, “What is the signal in noise?” Vision Res. 45, 1835-1846 (2005). [CrossRef] [PubMed]
  22. J. A. Solomon, “Channel selection with non-white-noise masks,” J. Opt. Soc. Am. A 17, 986-993 (2000). [CrossRef]
  23. C. K. Abbey and M. P. Eckstein, “Estimates of human-observer templates for simple detection tasks in correlated noise,” Proc. SPIE 3981, 70-77 (2000). [CrossRef]
  24. C. K. Abbey and M. P. Eckstein, “Classification images for simple a detection and discrimination tasks in correlated noise,” J. Opt. Soc. Am. A 24, B110-B124 (2007). [CrossRef]
  25. A. E. Burgess, “Visual signal detection with two-component noise: low-pass spectrum effects,” J. Opt. Soc. Am. A 16, 694-704 (1999). [CrossRef]
  26. A. E. Burgess, X. Li, and C. K. Abbey, “Visual signal detectability with two noise components: anomalous masking effects,” J. Opt. Soc. Am. A 14, 2420-2442 (1997). [CrossRef]
  27. J. P. Rolland and H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  28. C. K. Abbey and H. H. Barrett, “Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473-488 (2001). [CrossRef]
  29. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, “Effect of noise correlation on detectability of disk signals in medical imaging,” J. Opt. Soc. Am. A 2, 1752-1759 (1985). [CrossRef] [PubMed]
  30. D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433-436 (1997). [CrossRef]
  31. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437-442 (1997). [CrossRef]
  32. C. W. Tyler, H. Chan, L. Liu, B. McBride, and L. Kontsevich, “Bit-stealing: how to get 1786 or more grey levels from an 8-bit color monitor,” Proc. SPIE 1666, 351-354 (1992). [CrossRef]
  33. J. M. Gold, P. J. Bennett, and A. B. Sekuler, “Signal but not noise changes with perceptual learning,” Nature 402, 176-178 (1999). [CrossRef]
  34. J. M. Gold, A. B. Sekuler, and P. J. Bennett, “Characterizing perceptual learning with external noise,” Cogn. Sci. 28, 167-207 (2004). [CrossRef]
  35. Z. L. Lu and B. A. Dosher, “Characterizing human perceptual inefficiencies with equivalent internal noise,” J. Opt. Soc. Am. A 16, 764-778 (1999). [CrossRef]
  36. D. G. Pelli, “Effects of visual noise,” Ph.D. dissertation (University of Cambridge, 1981).
  37. D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C.Blakemore, ed. (Cambridge Univ. Press, 1990), pp. 3-24.
  38. D. G. Pelli and B. Farell, “Why use noise?” J. Opt. Soc. Am. A 16, 647-653 (1999). [CrossRef]
  39. W. S. Geisler, “Ideal observer analysis,” in The Visual Neurosciences, J.S.Werner and L.M.Chalupa, eds. (MIT Press, 2004), p. 2 v. (various pagings).
  40. W. L. Braje, B. S. Tjan, and G. E. Legge, “Human-efficiency for recognizing and detecting low-pass filtered objects,” Vision Res. 35, 2955-2966 (1995). [CrossRef] [PubMed]
  41. C. K. Abbey and M. P. Eckstein, “Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments,” J. Vision 2, 66-78 (2002). [CrossRef]
  42. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Vol. 57 of Monographs on Statistics and Applied Probability (Chapman & Hall, 1993).
  43. G. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391-406 (1987). [CrossRef] [PubMed]
  44. A. E. Burgess and B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617-627 (1988). [CrossRef] [PubMed]
  45. B. A. Dosher and Z. Lu, “Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting,” Proc. Natl. Acad. Sci. U.S.A. 95, 13988-13993 (1998). [CrossRef] [PubMed]
  46. Z. L. Lu and B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183-1198 (1998). [CrossRef] [PubMed]
  47. A. J. Ahumada, Jr., “Classification image weights and internal noise level estimation,” J. Vision 2, 121-131 (2002). [CrossRef]
  48. R. F. Murray, P. J. Bennett, and A. B. Sekuler, “Optimal methods for calculating classification images: weighted sums,” J. Vision 2, 79-104 (2002). [CrossRef]
  49. A. B. Watson, “Multi-category classification: template models and classification images,” Invest. Ophthalmol. Visual Sci. 39, S912 (1998).
  50. R. F. Murray, P. J. Bennett, and A. B. Sekuler, “Classification images predict absolute efficiency,” J. Vision 5, 139-149 (2005). [CrossRef]
  51. P. Neri and D. J. Heeger, “Spatiotemporal mechanisms for detecting and identifying image features in human vision,” Nat. Neurosci. 5, 812-816 (2002). [PubMed]
  52. B. Conrey and J. M. Gold, “An ideal observer analysis of variability in visual-only speech,” Vision Res. 46, 3243-3258 (2006). [CrossRef] [PubMed]
  53. M. P. Eckstein, S. S. Shimozaki, and C. K. Abbey, “The footprints of visual attention in the Posner cueing paradigm revealed by classification images,” J. Vision 2, 25-45 (2002). [CrossRef]
  54. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508-1532 (1985). [CrossRef] [PubMed]
  55. B. S. Tjan and A. S. Nandy, “Classification images with uncertainty,” J. Vision 6, 387-413 (2006). [CrossRef]
  56. E. Barth, B. L. Beard, and A. J. Ahumada, Jr., “Nonlinear features in vernier acuity,” Proc. SPIE 3644, 88-96 (1999). [CrossRef]
  57. J. A. Solomon, “Noise reveals visual mechanisms of detection and discrimination,” J. Vision 2, 105-120 (2002). [CrossRef]
  58. A. J. Ahumada and B. L. Beard, “Classification images for detection,” Invest. Ophthalmol. Visual Sci. 40, 3015 (1999).
  59. D. M. Green, “Consistency of auditory detection judgments,” Psychol. Rev. 71, 392-407 (1964). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited