OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2480–2487

Hermite-cosine-Gaussian beams propagating in uniaxial crystals orthogonal to the optical axis

Bin Tang  »View Author Affiliations


JOSA A, Vol. 26, Issue 12, pp. 2480-2487 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002480


View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of polarized Hermite-cosine-Gaussian (HCosG) beams in uniaxial crystals orthogonal to the optical axis is investigated. Analytical formulas for a HCosG beam propagating in uniaxial crystals orthogonal to the optical axis are derived, and the propagation properties of the beam are illustrated numerically. The results show that the HCosG beam can keep its initial beam profile almost invariant for a short propagation distance. However, the initial symmetry and the linear polarization of an incident HCosG beam cannot be preserved during propagation in uniaxial crystals. In addition, the distributions of optical fields are closely related to the decentered parameter.

© 2009 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(260.1180) Physical optics : Crystal optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

History
Original Manuscript: July 29, 2009
Manuscript Accepted: September 25, 2009
Published: November 3, 2009

Citation
Bin Tang, "Hermite-cosine-Gaussian beams propagating in uniaxial crystals orthogonal to the optical axis," J. Opt. Soc. Am. A 26, 2480-2487 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-12-2480


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. W. Casperson and A. A. Tovar, “Hermite-sinusoidal-Gaussian beams in complex optical systems,” J. Opt. Soc. Am. A 15, 954-961 (1998). [CrossRef]
  2. A. A. Tovar and L. W Casperson, “Production and propagation of Hermite-sinusoidal-Gaussian beams,” J. Opt. Soc. Am. A 15, 2425-2432 (1998). [CrossRef]
  3. A. Belafhal and M. Ibnchaikh, “Propagation properties of Hermite-cosh-Gaussian laser beams,” Opt. Commun. 186, 269-276 (2000). [CrossRef]
  4. S. Yu, H. Guo, X. Q. Fu, and W. Hu, “Propagation properties of elegant Hermite-cosh-Gaussian laser beams,” Opt. Commun. 204, 59-66 (2002).
  5. D. Deng, “Propagation of elegant Hermite cosine Gaussian laser beams,” Opt. Commun. 259, 409-414 (2006). [CrossRef]
  6. D. M. Zhao, H. D. Mao, W. C. Zhang, and S. Wang, “Propagation of off-axial Hermite-cosine-Gaussian beams through an apertured and misaligned ABCD optical system,” Opt. Commun. 224, 5-12 (2003). [CrossRef]
  7. D. M. Zhao, W. C. Zhang, S. M. Wang, H. J. Liu, Q. H. Zhu, and X. F. Wei, “Propagation of one-dimensional off-axial Hermite-cosine-Gaussian beams through an apertured paraxial ABCD optical system” Optik (Stuttgart) 114, 49-51 (2003). [CrossRef]
  8. N. R. Zhou and G. H. Zeng, “Propagation properties of Hermite-cosine-Gaussian beams through a paraxial optical ABCD system with hard-edge aperture,” Opt. Commun. 232, 49-59 (2004). [CrossRef]
  9. D. Sun and D. M. Zhao, “Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system,” J. Opt. Soc. Am. A 22, 1683-1690 (2005). [CrossRef]
  10. D. M. Zhao, H. D. Mao, and D. Sun, “Approximate analytical expression for the kurtosis parameter of off-axial Hermite-cosine-Gaussian beams propagating through apertured and misaligned ABCD optical systems,” Optik (Stuttgart) 114, 535-538 (2003). [CrossRef]
  11. X. Wang and B. Lü, “The M2 factor of Hermite-cosh-Gaussian beams,” J. Mod. Opt. 48, 2097-2103 (2001).
  12. Y. L. Qiu, H. Guo, X. Z. Chen, and H. J. Kong, “Propagation properties of an elegant Hermite-cosh-Gaussian beam through a finite aperture,” J. Opt. A, Pure Appl. Opt. 6, 210-215 (2004). [CrossRef]
  13. H. T. Eyyuboğlu, “Propagation of Hermite-cosh-Gaussian laser beams in turbulent atmosphere,” Opt. Commun. 245, 37-47 (2005). [CrossRef]
  14. H. T. Eyyuboğlu and Y. Baykal, “Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beams in turbulent atmosphere,” J. Opt. Soc. Am. A 22, 2709-2718 (2005). [CrossRef]
  15. H. T. Eyyuboğlu, “Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere,” J. Opt. Soc. Am. A 22, 1527-1535 (2005). [CrossRef]
  16. A. Yang, E. Zhang, X. Ji, and B. Lü, “Angular spread of partially coherent Hermite-cosh-Gaussian beams propagating through atmospheric turbulence,” Opt. Express 16, 8366-8380 (2008). [CrossRef] [PubMed]
  17. A. Yang, E. Zhang, X. Ji, and B. Lü, “Propagation properties of partially coherent Hermite-cosh-Gaussian beams through atmospheric turbulence,” Opt. Laser Technol. 41, 714-722 (2009). [CrossRef]
  18. B. Tang and M. Jiang, “Propagation properties of vectorial Hermite-cosine-Gaussian beams beyond the paraxial approximation,” J. Mod. Opt. 56, 955-962 (2009). [CrossRef]
  19. J. A. Fleck Jr. and M. D. Feit, “Beam propagation in uniaxial anisotripic media,” J. Opt. Soc. Am. 73, 920-926 (1983). [CrossRef]
  20. A. Ciattoni, B. Crosignani, and C. Palma, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18, 1656-1661 (2001). [CrossRef]
  21. A. Ciattoni, G. Cincotti, and C. Palma, “Ordinary and extraordinary beams characterization in uniaxially anisotropic crystals,” Opt. Commun. 195, 55-61 (2001). [CrossRef]
  22. G. Cincotti, A. Ciattoni, and C. Palma, “Hermite-Gauss beams in uniaxially anisotropic crystal,” IEEE J. Quantum Electron. 37, 1517-1524 (2001). [CrossRef]
  23. A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals” J. Opt. Soc. Am. A 19, 792-796 (2002). [CrossRef]
  24. G. Cincotti, A. Ciattoni, and C. Palma, “Laguerre-Gaussian and Bessel-Gaussian beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680-1688 (2002). [CrossRef]
  25. B. Lü and S. Luo, “Propagation properties of three-dimensional flattened Gaussian beams in uniaxially anisotropic crystals,” Opt. Laser Technol. 36, 51-56 (2004). [CrossRef]
  26. D. Deng, H. Yu, S. Xu, J. Shao, and Z. Fan, “Propagation and polarization properties of hollow Gaussian beams in uniaxial crystals,” Opt. Commun. 281, 202-209 (2008). [CrossRef]
  27. D. Deng, J. Shen, Y. Tian, J. Shao, and Z. Fan, “Propagation properties of beams generated by Gaussian mirror resonator in uniaxial crystals,” Optik (Stuttgart) 118, 547-551 (2007). [CrossRef]
  28. B. Tang, H. Tang, K. Zhu, H. Yang, and W. Wen, “Propagation properties of Hermite-Cosh-Gaussian beams in uniaxially anisotropic crystals,” J. Optoelectron., Laser 17, 365-368 (2006). (in Chinese)
  29. A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystal orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20, 2163-2171 (2003). [CrossRef]
  30. A. Ciattoni and C. Palma, “Nondiffracting beams in uniaxial media propagating orthogonally to the optical axis,” Opt. Commun. 224, 175-183 (2003). [CrossRef]
  31. A. Ciattoni and C. Palma, “Anisotropic beam spreading in uniaxial crystal,” Opt. Commun. 231, 79-92 (2004). [CrossRef]
  32. D. Liu and Z. Zhou, “Various dark hollow beams propagating in uniaxial crystals orthogonal to the optical axis,” J. Opt. A, Pure Appl. Opt. 10, 095005 (2008). [CrossRef]
  33. D. Liu and Z. Zhou, “Propagation properties of anomalous hollow beam in uniaxial crystals orthogonal to the optical axis,” Opt. Laser Technol. 41, 877-884 (2009). [CrossRef]
  34. D. Liu and Z. Zhou, “Propagation of partially coherent flat-topped beams in uniaxial crystals orthogonal to the optical axis,” J. Opt. Soc. Am. A 26, 924-930 (2009). [CrossRef]
  35. D. Liu and Z. Zhou, “Propagation of partially polarized, partially coherent beams in uniaxial crystals orthogonal to the optical axis,” Eur. Phys. J. D 54, 95-101 (2009). [CrossRef]
  36. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited