OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 12 — Dec. 1, 2009
  • pp: 2586–2591

Fractional Fourier transform of Ince–Gaussian beams

Guoquan Zhou  »View Author Affiliations


JOSA A, Vol. 26, Issue 12, pp. 2586-2591 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002586


View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ince–Gaussian beams are introduced to describe the natural resonating modes produced by stable resonators, and they form the third completely orthogonal family of exact solutions of the paraxial wave equation. The fractional Fourier transform (FRFT) is applied to treat the propagation of Ince–Gaussian beams, and an analytical expression for an Ince–Gaussian beam passing through a FRFT system is derived. The normalized intensity distribution of an Ince–Gaussian beam in the FRFT plane is graphically illustrated with numerical examples, and the influences of the different parameters on the normalized intensity distribution are discussed in detail.

© 2009 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(350.5500) Other areas of optics : Propagation
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: June 23, 2009
Revised Manuscript: October 11, 2009
Manuscript Accepted: October 13, 2009
Published: November 16, 2009

Citation
Guoquan Zhou, "Fractional Fourier transform of Ince-Gaussian beams," J. Opt. Soc. Am. A 26, 2586-2591 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-12-2586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian beams,” Opt. Lett. 29, 144-146 (2004). [CrossRef] [PubMed]
  2. U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, “Observation of Ince-Gaussian modes in stable resonators,” Opt. Lett. 29, 1870-1872 (2004). [CrossRef] [PubMed]
  3. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. A 21, 873-880 (2004). [CrossRef]
  4. S. Chu and K. Otsuka, “Numerical study for selective excitation of Ince-Gaussian modes in end-pumped solid-state lasers,” Opt. Express 15, 16506-16519 (2007). [CrossRef] [PubMed]
  5. J. C. Gutiérrez-Vega and M. A. Bandres, “Ince-Gaussian beam in quadratic index medium,” J. Opt. Soc. Am. A 22, 306-309 (2005). [CrossRef]
  6. S. Wang and T. Xu, “Propagation of Ince-Gaussian beams in a thermal lens medium,” Opt. Commun. 265, 1-5 (2006). [CrossRef]
  7. D. Deng and Q. Guo, “Ince-Gaussian beams in strongly nonlocal nonlinear media,” J. Phys. B 41, 145401-145407 (2008). [CrossRef]
  8. G. Zhou, K. Zhu, and F. Liu, “Vectorial structure of Ince-Gaussian beam in the far field,” J. Mod. Opt. 54, 2807-2817 (2008). [CrossRef]
  9. M. A. Bandres, “Elegant Ince-Gaussian beams,” Opt. Lett. 29, 1724-1726 (2004). [CrossRef] [PubMed]
  10. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical Ince-Gaussian beams with a liquid crystal display,” Opt. Lett. 31, 649-651 (2006). [CrossRef] [PubMed]
  11. Q. Lin and Y. Cai, “Fractional Fourier transform for partially coherent Gaussian-Schell model beams,” Opt. Lett. 27, 1672-1674 (2002). [CrossRef]
  12. Y. Cai and Q. Lin, “Fractional Fourier transform for elliptical Gaussian beam,” Opt. Commun. 217, 7-13 (2003). [CrossRef]
  13. Y. Cai and Q. Lin, “Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane,” J. Opt. Soc. Am. A 20, 1528-1536 (2003). [CrossRef]
  14. Y. Cai and Q. Lin, “Properties of flattened Gaussian beam in the fractional Fourier transform plane,” J. Opt. A, Pure Appl. Opt. 5, 272-275 (2003). [CrossRef]
  15. Y. Cai, D. Ge, and Q. Lin, “Fractional Fourier transform for partially coherent and partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 5, 453-459 (2003). [CrossRef]
  16. Y. Cai and Q. Lin, “The fractional Fourier transform for a partially coherent pulse,” J. Opt. A, Pure Appl. Opt. 6, 307-311 (2004). [CrossRef]
  17. D. Zhao, H. Mao, H. Liu, S. Wang, F. Jing, and X. Wei, “Propagation of Hermite-cosh-Gaussian beams in apertured fractional Fourier transforming systems,” Opt. Commun. 236, 225-235 (2004). [CrossRef]
  18. X. Du and D. Zhao, “Fractional Fourier transform of truncated elliptical Gaussian beams,” Appl. Opt. 45, 9049-9052 (2006). [CrossRef] [PubMed]
  19. X. Du and D. Zhao, “Fractional Fourier transform of off-axial elliptical cosh-Gaussian beams,” Optik (Stuttgart) 119, 379-382 (2008). [CrossRef]
  20. X. Du and D. Zhao, “Fractional Fourier transforms of elliptical Hermite-cosh-Gaussian beams,” Phys. Lett. A 366, 271-275 (2007). [CrossRef]
  21. G. Zhou, “Fractional Fourier transform of Lorentz-Gauss beams,” J. Opt. Soc. Am. A 26, 350-355 (2009). [CrossRef]
  22. G. Zhou, “Fractional Fourier transform of a higher-order cosh-Gaussian beam,” J. Mod. Opt. 56, 886-892 (2009). [CrossRef]
  23. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince-Gaussian series representation of the two-dimensional fractional Fourier transform,” Opt. Lett. 30, 540-542 (2005). [CrossRef] [PubMed]
  24. F. M. Arscott, Periodic Differential Equations (Pergamon, 1964).
  25. F. M. Arscott, “The Whittaker-Hill equation and the wave equation in paraboloidal coordinates,” Proc. R. Soc. Edinburgh, Sect. A: Math. 67, 265-276 (1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited