OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 245–251

Three-dimensional object-distortion-tolerant recognition for integral imaging using independent component analysis

Cuong Manh Do, Raúl Martínez-Cuenca, and Bahram Javidi  »View Author Affiliations


JOSA A, Vol. 26, Issue 2, pp. 245-251 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000245


View Full Text Article

Enhanced HTML    Acrobat PDF (897 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Independent component analysis (ICA) aims at extracting unknown components from multivariate data assuming that the underlying components are mutually independent. This technique has been successfully applied to the recognition and classification of objects. We present a method that combines the benefits of ICA and the ability of the integral imaging technique to obtain 3D information for the recognition of 3D objects with different orientations. Our recognition is also possible when the 3D objects are partially occluded by intermediate objects.

© 2009 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing

ToC Category:
Image Processing

History
Original Manuscript: August 28, 2008
Manuscript Accepted: November 11, 2008
Published: January 20, 2009

Citation
Cuong Manh Do, Raúl Martínez-Cuenca, and Bahram Javidi, "Three-dimensional object-distortion-tolerant recognition for integral imaging using independent component analysis," J. Opt. Soc. Am. A 26, 245-251 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-2-245


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Lippmann, “La photographie integrale,” C. R. Hebd. Seances Acad. Sci. 146, 446-451 (1908).
  2. P. Sokolov, Autostereoscopy and Integral Photography by Professor Lippmann's Method (Moscow State U. Press, 1911).
  3. H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171-176 (1931). [CrossRef]
  4. F. Okano, H. Hoshino, J. Arai, and I. Yayuma, “Real time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598-1603 (1997). [CrossRef] [PubMed]
  5. B.Javidi and F.Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  6. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597-603 (2005). [CrossRef]
  7. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006). [CrossRef]
  8. R. Martínez-Cuenca, G. Saavedra, A. Pons, B. Javidi, and M. Martínez-Corral, “Facet braiding: a fundamental problem in integral imaging,” Opt. Lett. 32, 1078-1080 (2007). [CrossRef] [PubMed]
  9. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real time integral photography for three-dimensional images,” Appl. Opt. 37, 2034-2045 (1998). [CrossRef]
  10. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324-326 (2002). [CrossRef]
  11. J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924-1926 (2003). [CrossRef] [PubMed]
  12. J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, S.-K. Kim, and H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates,” Opt. Eng. (Bellingham) 42, 3326-3333 (2003). [CrossRef]
  13. R. Martinez, A. Pons, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Optically-corrected elemental images for undistorted integral image display,” Opt. Express 14, 9657-9663 (2006). [CrossRef]
  14. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157-159 (2001). [CrossRef]
  15. A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11, 2446-2451 (2003). [CrossRef] [PubMed]
  16. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491 (2004). [CrossRef] [PubMed]
  17. Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488-5496 (2002). [CrossRef] [PubMed]
  18. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528-3541 (2003). [CrossRef] [PubMed]
  19. S. Yeom and B. Javidi, “Three-dimensional distortion-tolerant object recognition using integral imaging,” Opt. Express 12, 5795-5809 (2004). [CrossRef] [PubMed]
  20. C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005). [CrossRef]
  21. Y. S. Hwang, S.-H. Hong, and B. Javidi, “Free view 3-D visualization of occluded objects by using computational synthetic aperture integral imaging,” J. Disp. Technol. 3, 64-70 (2007). [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  23. F. Dubois, M. Novella Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131-1139 (2004). [CrossRef] [PubMed]
  24. S. Der, A. Chan, N. Nasrabadi, and H. Kwon, “Automated vehicle detection in forward-looking infrared imagery,” Appl. Opt. 43, 333-348 (2004). [CrossRef] [PubMed]
  25. F. Sadjadi, Automatic Target Recognition (SPIE, 2000).
  26. A. Mahalanobis, “A review of correlation filters and their application for scene matching,” in Optoelectronic Devices and Systems for Processing, B.Javidi and K.M.Johnson, eds. (SPIE, 1996), pp. 240-260.
  27. R. Kotyński, F. Goudail, and P. Réfrégier, “Comparison of the performance of linear and nonlinear filters in the presence of nonergodic noise,” J. Opt. Soc. Am. A 14, 2162-2167 (1997). [CrossRef]
  28. A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. V. Nevel, “Design and application of quadratic correlation filters for target detection,” IEEE Trans. Aerosp. Electron. Syst. 40, 837-850 (2004). [CrossRef]
  29. P. Réfrégier, Noise Theory and Application to Physics (Springer, 2003).
  30. F. Dubois, “Automatic spatial frequency selection algorithm for pattern recognition by correlation,” Appl. Opt. 32, 4365-4371 (1993). [CrossRef] [PubMed]
  31. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, 2001). [CrossRef]
  32. H. Farid and E. H. Adelson, “Separating reflections from images by use of independent component analysis,” J. Opt. Soc. Am. A 16, 2136-2145 (1999). [CrossRef]
  33. N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169-2176 (1999). [CrossRef]
  34. A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation,” in Advances in Neural Information Processing Systems 11 (NIPS1998) (MIT Press, 1999), pp. 473-479.
  35. M. S. Bartlett, H. Martin Lades, and T. J. Sejnowski, “Independent component representations for face recognition,” Proc. SPIE , 3299, 528-539 (1998). [CrossRef]
  36. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13, 1450-1464 (2002). [CrossRef]
  37. H. Zheng, D. S. Huang, and L. Shang, “Feature selection in independent component subspace for microarray data classification,” Neurocomputing 69, 2407-2410 (2006). [CrossRef]
  38. H. Murakami and B. Kumar, “Efficient calculation of primary images from a set of images,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 511-515 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited