OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 252–258

Scanning holographic microscopy with spatially incoherent sources: reconciling the holographic advantage with the sectioning advantage

Guy Indebetouw  »View Author Affiliations


JOSA A, Vol. 26, Issue 2, pp. 252-258 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000252


View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new mode of operation of scanning holographic microscopy that combines the two seemingly incompatible holographic advantage and axial sectioning advantage is proposed and demonstrated. Temporally modulated Fabry–Perot fringes are scanned in a two-dimensional raster over the specimen. With a spatially coherent (point) source, the fringes are spatially nonlocalized and encode the entire three-dimensional volume of the specimen in the form of a single-sideband in-line Fresnel hologram. With an extended spatially incoherent source the fringes are axially localized and select the modulated information from a specific axial plane only. The holographic advantage and the sectioning advantage can thus be achieved with the same scanning holographic setup using different source sizes.

© 2009 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(180.0180) Microscopy : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: August 7, 2008
Revised Manuscript: November 14, 2008
Manuscript Accepted: December 4, 2008
Published: January 20, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Guy Indebetouw, "Scanning holographic microscopy with spatially incoherent sources: reconciling the holographic advantage with the sectioning advantage," J. Opt. Soc. Am. A 26, 252-258 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-2-252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslawskii, “Reconstruction of a hologram with a computer,” Soviet Phys.-Techn. Phys. 17, 333-334 (1972).
  3. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cell with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005). [CrossRef] [PubMed]
  4. E. Cuche, F. Bevilaqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  5. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cell with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  6. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  7. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6543 (2005). [CrossRef] [PubMed]
  8. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744-1760 (2008). [CrossRef]
  9. D. Gabor, “A new microscopic principle,” Nature 4098, 777-778 (1948). [CrossRef]
  10. O. Ersoy, “One-image-only digital holography,” Optik (Jena) 53, 47-62 (1979).
  11. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  12. R. B. Owen and A. A. Zozulya, “In-line digital holgraphic sensor for monitoring and characterizing marine particulates,” Opt. Eng. (Bellingham) 38, 2187-2197 (2000). [CrossRef]
  13. J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001). [CrossRef]
  14. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]
  15. H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001). [CrossRef]
  16. T.-C. Poon and A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Opt. Lett. 4, 317-319 (1979). [CrossRef] [PubMed]
  17. A. W. Lohmann and W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1141-1150 (1978). [CrossRef] [PubMed]
  18. B. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, and M. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997). [CrossRef]
  19. G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23, 1699-1707 (2006). [CrossRef]
  20. G. Indebetouw, Y. Tada, R. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993-1000 (2007). [CrossRef] [PubMed]
  21. J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14, 4280-4285 (2006). [CrossRef]
  22. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  23. G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5:63, 1-7 (2006). [CrossRef]
  24. G. Indebetouw, P. K. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380-390 (2000). [CrossRef]
  25. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912-914 (2007). [CrossRef] [PubMed]
  26. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190-195 (2008). [CrossRef]
  27. P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images: an overview,” IEEE Signal Process. Mag. 23, 32-45 (2006). [CrossRef]
  28. E. H. K. Stelzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15-24 (1997). [CrossRef]
  29. P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50-61 (1999). [CrossRef]
  30. P. J. Shaw, “Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging,” in Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995). pp.373-387
  31. J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002). [CrossRef] [PubMed]
  32. M. A. A. Neil, R. Justaikis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  33. M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999). [CrossRef]
  34. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14, 7198-7209 (2006). [CrossRef] [PubMed]
  35. G. Indebetouw, A. El Maghnouji, and R. Foster, “Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus,” J. Opt. Soc. Am. A 22, 892-898 (2005). [CrossRef]
  36. G. Indebetouw, W. Zhong, and D. Chamberlin-Long, “Point-spread-function synthesis in scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 1708-1717 (2006). [CrossRef]
  37. G. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).
  38. T. Kim, “Optical sectioning by optical scanning holography and a Wiener filter,” Appl. Opt. 45, 872-879 (2006). [CrossRef] [PubMed]
  39. G. Indebetouw, “A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 2657-2661 (2006). [CrossRef]
  40. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am. 54, 240-244 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited