OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 274–277

Classical versus complex fractional Fourier transformation

D. Dragoman  »View Author Affiliations

JOSA A, Vol. 26, Issue 2, pp. 274-277 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quantum optical complex fractional Fourier transform (FRFT) has been related to the classical FRFT using both classical and quantum formalisms. In particular, it was shown that the kernel of the complex FRFT can be classically produced with rotated astigmatic optical systems that mimic the quantum entanglement property.

© 2009 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(270.0270) Quantum optics : Quantum optics
(080.2575) Geometric optics : Fractional Fourier transforms
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 19, 2008
Revised Manuscript: November 17, 2008
Manuscript Accepted: November 24, 2008
Published: January 27, 2009

D. Dragoman, "Classical versus complex fractional Fourier transformation," J. Opt. Soc. Am. A 26, 274-277 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-Y. Fan, L. Hu, and J. Wang, “Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics,” J. Opt. Soc. Am. A 25, 974-978 (2008). [CrossRef]
  2. H. Fan and Y. Fan, “EPR entangled states and complex fractional Fourier transformation,” Eur. Phys. J. D 21, 233-238 (2002). [CrossRef]
  3. R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368-2381 (2000). [CrossRef]
  4. A. Torre, “The fractional Fourier transform and some of its applications to optics,” Prog. Opt. 43, 531-596 (2002). [CrossRef]
  5. D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, 2004).
  6. S. Chávez-Cerda, J. R. Moya-Cessa, and H. M. Moya-Cessa, “Quantumlike systems in classical optics: Applications of quantum optical methods,” J. Opt. Soc. Am. B 24, 404-407 (2007). [CrossRef]
  7. K. Wódkiewicz and G. H. Herling, “Classical and nonclassical interference,” Phys. Rev. A 57, 815-821 (1998). [CrossRef]
  8. D. Dragoman, “Classical optical analogs of quantum Fock states,” Optik (Jena) 111, 393-396 (2000).
  9. D. Dragoman, “Phase space correspondence between classical optics and quantum mechanics,” Prog. Opt. 42, 433-496 (2002). [CrossRef]
  10. D. Dragoman and M. Dragoman, “Quantum coherent versus classical coherent light,” Opt. Quantum Electron. 33, 239-252 (2001). [CrossRef]
  11. H. Fan and A. Wuensche, “Wavefunctions of two-mode states in entangled-state representation,” J. Opt. B: Quantum Semiclassical Opt. 7, R88-R102 (2005). [CrossRef]
  12. C. C. Gerry, “Remarks on the use of group theory in quantum optics,” Opt. Express 8, 76-85 (2001). [CrossRef] [PubMed]
  13. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168-1177 (1970). [CrossRef]
  14. H. Weber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543-559 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited