OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 297–304

Design of diffractive lenses that generate optical nulls without phase singularities

Rajesh Menon, Paul Rogge, and Hsin-Yu Tsai  »View Author Affiliations

JOSA A, Vol. 26, Issue 2, pp. 297-304 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We exploit a technique, based on nonlinear optimization, to design diffractive lenses that focus optical nulls without any phase singularities. To ensure ease of fabrication, these lenses are composed of concentric circular zones. Furthermore, we show that this technique is readily extended to multiple wavelengths and can be used to improve tolerance to fabrication errors.

© 2009 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1970) Diffraction and gratings : Diffractive optics
(050.5080) Diffraction and gratings : Phase shift
(230.3990) Optical devices : Micro-optical devices
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Diffraction and Gratings

Original Manuscript: June 5, 2008
Revised Manuscript: November 20, 2008
Manuscript Accepted: November 24, 2008
Published: January 27, 2009

Rajesh Menon, Paul Rogge, and Hsin-Yu Tsai, "Design of diffractive lenses that generate optical nulls without phase singularities," J. Opt. Soc. Am. A 26, 297-304 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (Wiley, 2000).
  2. Y. Arieli, S. Noach, S. Ozeri, and N. Eisenberg, “Design of diffractive optical elements for multiple wavelengths,” Appl. Opt. 37, 6174-6177 (1998). [CrossRef]
  3. D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469-2475 (1995). [CrossRef] [PubMed]
  4. S. Zhou, P. Yeh, and R. Nabiev, “Optimal design of dual-wavelength multiple beam splitters,” Opt. Lett. 20, 109-111 (1995). [CrossRef] [PubMed]
  5. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462-2468 (1995). [CrossRef] [PubMed]
  6. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005). [CrossRef] [PubMed]
  7. R. Menon, H.-Y. Tsai, and S. W. Thomas, “Far-field generation of localized light fields using far-field optics via absorbance modulation,” Phys. Rev. Lett. 98, 043905 (2007). [CrossRef] [PubMed]
  8. M. P. MacDonald, L. Paterson, G. Armstrong, A. J. Bryant, W. Sibbett, and K. Dholakia, “Laguerre-gaussian laser modes for biophotonics and micromanipulation,” Proc. SPIE 5147, 48-59 (2003). [CrossRef]
  9. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748-1754 (1989). [CrossRef] [PubMed]
  10. C. Paterson and R. Smith, “Higher-order bessel waves produced by axicon-type computer-generated holograms,” Opt. Commun. 124, 121-130 (1996). [CrossRef]
  11. T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, “Generation of a doughnut-shaped beam with a spiral phase plate,” Rev. Sci. Instrum. 75, 5131-5135 (2004). [CrossRef]
  12. J. A. O. Huguenin, B. C. dos Santos, P. A. M. dos Santos, and A. Z. Khoury, “Topological defects in moiré fringes with spiral zone plates,” J. Opt. Soc. Am. A 20, 1883-1889 (2003). [CrossRef]
  13. H.-Y. Tsai, H. I. Smith, and R. Menon, “Fabrication of spiral-phase diffractive elements using scanning-electron-beam lithography,” J. Vac. Sci. Technol. B 25, 2068-2071 (2007). [CrossRef]
  14. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191-193 (2000). [CrossRef]
  15. K. T. Gahagan and G. A. Schwartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  16. M. D. Levenson, T. Ebihara, G. Dai, Y. Morikawa, N. Hayashi, and S. M. Tan, “Optical vortex masks for via levels,” J. Microlithogr., Microfabr., Microsyst. 3, 293-304 (2004). [CrossRef]
  17. A. Tavrov, R. Bohr, M. Totzeck, H. Tiziani, and M. Takeda, “Achromatic nulling interferometer based on a geometric spin-redirection phase,” Opt. Lett. 27, 2070-2072 (2002). [CrossRef]
  18. E. Serabyn, J. K. Wallace, G. J. Hardy, E. G. H. Schmidtlin, and H. T. Nguyen, “Deep nulling of visible laser light,” Appl. Opt. 38, 7128-7132 (1999). [CrossRef]
  19. E. Serabyn and M. M. Colavita, “Fully symmetric nulling beam combiners,” Appl. Opt. 40, 1668-1671 (2001). [CrossRef]
  20. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750-R1753 (1999). [CrossRef]
  21. G. T. di Francia, “Supergain antennas and optical resolving power,” Nuovo Cimento, Suppl. 9, 426-438 (1952). [CrossRef]
  22. C. J. R. Sheppard, G. Calvert, and M. Wheatland, “Focal distribution for superresolving toraldo filters,” J. Opt. Soc. Am. A 15, 849-856 (1998). [CrossRef]
  23. T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637-1646 (1997). [CrossRef]
  24. D. Gil, R. Menon, and H. I. Smith, “Fabrication of high-numerical aperture phase zone plates with a single lithgraphy step and no etching,” J. Vac. Sci. Technol. B 21, 2956-2960 (2003). [CrossRef]
  25. J. W. Goodman, An Introduction to Fourier Optics (McGraw-Hill, 1996), Chap. 4.
  26. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996).
  27. The genetic algorithm was implemented using the Genetic Algorithm and Direct Search toolbox in MATLAB. Documentation available at http:www.mathworks.com/access/helpdesk/help/toolbox/gads/.
  28. D. W. Prather and S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131-1142 (1999). [CrossRef]
  29. M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited