OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 305–312

Physical optics modeling of 2D dielectric lenses

Vladimir B. Yurchenko and Ayhan Altintas  »View Author Affiliations

JOSA A, Vol. 26, Issue 2, pp. 305-312 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an advanced physical optics formulation for the accurate modeling of dielectric lenses used in quasi-optical systems of millimeter, submillimeter, and infrared wave applications. For comparison, we obtain an exact full-wave solution of a two-dimensional lens problem and use it as a benchmark for testing and validation of asymptotic models being considered.

© 2009 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(220.3630) Optical design and fabrication : Lenses
(260.1960) Physical optics : Diffraction theory
(110.6795) Imaging systems : Terahertz imaging

Original Manuscript: August 20, 2008
Revised Manuscript: December 8, 2008
Manuscript Accepted: December 8, 2008
Published: January 27, 2009

Vladimir B. Yurchenko and Ayhan Altintas, "Physical optics modeling of 2D dielectric lenses," J. Opt. Soc. Am. A 26, 305-312 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. O'Sullivan, G. Cahill, J. A. Murphy, W. K. Gear, J. Harris, P. A. R. Ade, S. E. Church, K. L. Thompson, C. Pryke, J. Bock, M. Bowden, M. L. Brown, J. E. Carlstrom, P. G. Castro, T. Culverhouse, R. B. Friedman, K. M. Ganga, V. Haynes, J. R. Hinderks, J. Kovak, A. E. Lange, E. M. Leitch, O. E. Mallie, S. J. Melhuish, A. Orlando, L. Piccirillo, G. Pisano, N. Rajguru, B. A. Rusholme, R. Schwarz, A. N. Taylor, E. Y. S. Wu, and M. Zemcov, “The quasi-optical design of the QUaD telescope,” Infrared Phys. Technol. 51, 277-286 (2008).
  2. A. Walther, The Ray and Wave Theory of Lenses (Cambridge U. Press, 2006).
  3. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  4. P. Wenig, M. Schneider, and R. Weigel, “Performance analysis of a cylindric dielectric lens antenna for 77 GHz Automotive Radar,” in Proceedings of International Radar Symposium (IRS 2008), 21-23 May 2008, Wroclaw, Poland, A.Kawalec and P.Kaniewski, eds. (Institute of Radioelectronics, 2008), paper B1-1.
  5. D. Feng, Y. Yan, G. Jin, and S. Fan, “Axial focusing characteristics of diffractive microlenses based on a rigorous electromagnetic theory,” J. Opt. A, Pure Appl. Opt. 6, 1067-1071 (2004). [CrossRef]
  6. J.-S. Ye, B.-Z. Dong, B.-Y. Gu, G.-Z. Yang, and S.-T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19, 2030-2035 (2002). [CrossRef]
  7. J.-S. Ye, B.-Y. Gu, B.-Z. Dong, and S.-T. Liu, “Application of improved first Rayleigh-Sommerfeld method to analyze the performance of cylindrical microlenses with different f-numbers,” J. Opt. Soc. Am. A 22, 862-869 (2005). [CrossRef]
  8. K. Duan and B. Lu, “Improved diffraction integral for studying the diffracted field of a spherical microlens,” J. Opt. Soc. Am. A 22, 2677-2681 (2005). [CrossRef]
  9. M. N. O. Sadiku, Numerical Techniques in Electromagnetics (CRC, 1992).
  10. C. Muller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer-Verlag, 1969).
  11. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34-43 (1997). [CrossRef]
  12. G. Fikioris, “A note on the method of analytical regularization,” IEEE Antennas Propag. Mag. 43, 34-40 (2001). [CrossRef]
  13. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, “Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization,” J. Opt. Soc. Am. A 21, 393-402 (2004). [CrossRef]
  14. A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator? Electromagnetic behavior of an extended hemielliptic lens for a submillimeter-wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004). [CrossRef]
  15. V. B. Yurchenko and A. Altintas, “Asymptotic wave-like modeling of dielectric lenses,” in Proceedings of the 6th International Conference on Antenna Theory and Techniques (ICATT 2007), 17-21 September 2007, Sevastopol, Ukraine, Y.S.Shifrin and N.N.Kolchigin, eds. (IEEE, 2007), pp. 93-98. [CrossRef]
  16. Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211-215 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited