OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 317–329

Ray-optics analysis of inhomogeneous biaxially anisotropic media

Maarten Sluijter, Dick K.G. de Boer, and H. Paul Urbach  »View Author Affiliations

JOSA A, Vol. 26, Issue 2, pp. 317-329 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Firm evidence of the biaxial nematic phase in liquid crystals, not induced by a magnetic or electric field, has been established only recently. The discovery of these biaxially anisotropic liquid crystals has opened up new areas of both fundamental and applied research. The advances in biaxial liquid-crystal-related topics call for a good overview on the propagation of waves through biaxially anisotropic media. Although the literature sporadically discusses biaxial interfaces, the propagation of waves through inhomogeneous biaxially anisotropic bulk materials has never been fully addressed. For this reason, we present a novel ray-tracing method for inhomogeneous biaxially anisotropic media. In the geometrical-optics approach, we clearly show how to assess the optical properties of inhomogeneous biaxially anisotropic media in three dimensions.

© 2009 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(260.1440) Physical optics : Birefringence
(080.3095) Geometric optics : Inhomogeneous elements in optical systems
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media
(260.2710) Physical optics : Inhomogeneous optical media

Original Manuscript: October 8, 2008
Manuscript Accepted: December 8, 2008
Published: January 28, 2009

Maarten Sluijter, Dick K. de Boer, and H. Paul Urbach, "Ray-optics analysis of inhomogeneous biaxially anisotropic media," J. Opt. Soc. Am. A 26, 317-329 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. N. Stavroudis, “Ray-tracing formulas for uniaxial crystals,” J. Opt. Soc. Am. 52, 187-191 (1962). [CrossRef]
  2. W. Swindell, “Extraordinary-ray and -wave tracing in uniaxial crystals,” Appl. Opt. 14, 2298-2301 (1975). [CrossRef] [PubMed]
  3. M. C. Simon and R. M. Echarri, “Ray tracing formulas for monoaxial optical components: vectorial formulation,” Appl. Opt. 25, 1935-1939 (1986). [CrossRef] [PubMed]
  4. S. C. McClain, L. W. Hillman, and R. A. Chipman, “Polarization ray tracing in anisotropic optically active media. II. Theory and physics,” J. Opt. Soc. Am. A 10, 2383-2392 (1993). [CrossRef]
  5. H. A. Buchdahl, An Introduction to Hamiltonian Optics (Courier Dover, 1993).
  6. M. Avendaño-Alejo and O. N. Stavroudis, “Huygens's principle and rays in uniaxial anisotropic media. II. Crystal axis orientation arbitrary,” J. Opt. Soc. Am. A 19, 1674-1679 (2002). [CrossRef]
  7. G. Panasyuk, J. R. Kelly, E. C. Gartland, and D. W. Allender, “Geometrical-optics approach in liquid crystal films with three-dimensional director variations,” Phys. Rev. E 67, 041702 (2003). [CrossRef]
  8. L. Yonghua, W. Pei, Y. Peijun, X. Jianping, and M. Hai, “Negative refraction at the interface of uniaxial anisotropic media,” Opt. Commun. 246, 429-435 (2005). [CrossRef]
  9. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21, 984-987 (1982). [CrossRef] [PubMed]
  10. T. C. Kraan, T. van Bommel, and R. A. M. Hikmet, “Modeling liquid-crystal gradient-index lenses,” J. Opt. Soc. Am. A 24, 3467-3477 (2007). [CrossRef]
  11. C. Jenkins, “Ray equation for a spatially variable uniaxial crystal and its use in the optical design of liquid-crystal lenses,” J. Opt. Soc. Am. A 24, 2089-2096 (2007). [CrossRef]
  12. M. Sluijter, D. K. G. de Boer, and J. J. M. Braat, “General polarized ray-tracing method for inhomogeneous uniaxially anisotropic media,” J. Opt. Soc. Am. A 25, 1260-1273 (2008). [CrossRef]
  13. B. R. Acharya, A. Primak, and S. Kumar, “Biaxial nematic phase in bent-core thermotropic mesogens,” Phys. Rev. Lett. 92, 145506 (2004). [CrossRef] [PubMed]
  14. L. A. Madsen, T. J. Dingemans, M. Nakata, and E. T. Samulski, “Thermotropic biaxial nematic liquid crystals,” Phys. Rev. Lett. 92, 145505 (2004). [CrossRef] [PubMed]
  15. G. R. Luckhurst, “Liquid crystals: a missing phase found at last?” Nature 430, 413-414 (2004). [CrossRef] [PubMed]
  16. S. Kumar, “Biaxial liquid crystal electro-optic devices,” U.S. patent WO/2007/025111 (2007).
  17. M. Schubert, “Generalized transmission ellipsometry for twisted biaxial dielectric media: application to chiral liquid crystals,” J. Opt. Soc. Am. A 13, 1930-1940 (1996). [CrossRef]
  18. M. C. Simon, “Refraction in biaxial crystals: a formula for the indices,” J. Opt. Soc. Am. A 4, 2201-2204 (1987). [CrossRef]
  19. T. A. Maldonado and T. K. Gaylord, “Light propagation characteristics for arbitrary wave vector directions in biaxial media by a coordinate-free approach,” Appl. Opt. 30, 2465-2480 (1991). [CrossRef] [PubMed]
  20. W. Zhang, “General ray-tracing formulas for crystal,” Appl. Opt. 31, 7328-7331 (1992). [CrossRef] [PubMed]
  21. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, “Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces,” J. Opt. Soc. Am. A 15, 248-260 (1998). [CrossRef]
  22. J. J. Stamnes and G. S. Sithambaranathan, “Reflection and refraction of an arbitrary electromagnetic wave at a plane interface separating an isotropic and a biaxial medium,” J. Opt. Soc. Am. A 18, 3119-3129 (2001). [CrossRef]
  23. F. Yang, H. Gao, and J. R. Sambles, “Relations between the critical angles and the optical tensor of a biaxial material,” Appl. Opt. 41, 7264-7274 (2002). [CrossRef] [PubMed]
  24. C. Bellver-Cebreros and M. Rodriguez-Danta, “Amphoteric refraction at the isotropic-anisotropic biaxial media interface: an alternative treatment,” J. Opt. A, Pure Appl. Opt. 8, 1067-1073 (2006). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, 1986).
  26. A. Sommerfeld and J. Runge, “Anwendung der Vektorrechnung auf die Grundlagen der Geometrischen Optiek,” Ann. Phys. 35, 277-298 (1911). [CrossRef]
  27. Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, 1990). [CrossRef]
  28. W. R. Hamilton, “On a mode of deducing the equation of Fresnel's wave,” Philos. Mag. 19, 381-383 (1841).
  29. L. Fletcher, The Optical Indicatrix and the Transmission of Light in Crystals (Oxford U. Press, 1892).
  30. Clemens Schaefer, Einführung in die Theoretische Physik (de Gruyter, 1932).
  31. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  32. M. V. Berry, “Conical diffraction asymptotics: fine structure of Pogendorff rings and axial spike,” J. Opt. A, Pure Appl. Opt. 6, 289-300 (2004). [CrossRef]
  33. J. G. Lunney and D. Weaire, “The ins and outs of conical refraction,” Europhys. News 37, 26-29 (2006). [CrossRef]
  34. M. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observation and theory,” Proc. R. Soc. London, Ser. A 462, 1629-1642 (2006). [CrossRef]
  35. M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton's diabolical point at the hart of crystal optics,” Prog. Opt. 50, 13-50 (2007). [CrossRef]
  36. M. Kline and I. W. Kay, Electromagnetic Theory and Geometrical Optics (Wiley, 1965).
  37. W. PressS. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, The Art of Scientific Computing (Cambridge U. Press, 1992).
  38. L. W. Griffiths, Introduction to the Theory of Equations (Wiley, 1946).
  39. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited