OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 376–386

Partially coherent illumination in full-field interferometric synthetic aperture microscopy

Daniel L. Marks, Brynmor J. Davis, Stephen A. Boppart, and P. Scott Carney  »View Author Affiliations


JOSA A, Vol. 26, Issue 2, pp. 376-386 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000376


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model is developed for optical coherence tomography and interferometric synthetic aperture microscopy (ISAM) systems employing full-field frequency-scanned illumination with partial spatial coherence. This model is used to derive efficient ISAM inverse scattering algorithms that give diffraction-limited resolution in regions typically regarded as out of focus. Partial spatial coherence of the source is shown to have the advantage of mitigating multiple-scattering effects that can otherwise produce significant artifacts in full-field coherent imaging.

© 2009 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.3170) Microscopy : Interference microscopy
(100.3200) Image processing : Inverse scattering

ToC Category:
Image Processing

History
Original Manuscript: June 5, 2008
Revised Manuscript: November 13, 2008
Manuscript Accepted: December 10, 2008
Published: January 29, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Daniel L. Marks, Brynmor J. Davis, Stephen A. Boppart, and P. Scott Carney, "Partially coherent illumination in full-field interferometric synthetic aperture microscopy," J. Opt. Soc. Am. A 26, 376-386 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-2-376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 5, 129-134 (2007). [CrossRef]
  2. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors 8, 3903-3931 (2008). [CrossRef] [PubMed]
  3. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006). [CrossRef]
  4. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527-2542 (2007). [CrossRef]
  5. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31, 3585-3587 (2006). [CrossRef] [PubMed]
  6. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441-1443 (2007). [CrossRef] [PubMed]
  7. D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23, 2433-2439 (2006). [CrossRef]
  8. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034-1041 (2007). [CrossRef]
  9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16, 2555-2569 (2008). [CrossRef] [PubMed]
  10. J. Goodman, Statistical Optics (Wiley, 1985), Chap. 5.3.3, pp. 193-195.
  11. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  12. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  13. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  14. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816-818 (2003). [CrossRef] [PubMed]
  15. E. Beaurepaire and A.-C. Boccara, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244-246 (1998). [CrossRef]
  16. P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, “Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography,” Appl. Opt. 34, 7722-7729 (2005). [CrossRef]
  17. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002). [CrossRef] [PubMed]
  18. A. Dubois, G. Moneron, K. Grieve, and A.-C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004). [CrossRef] [PubMed]
  19. A. K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874-2883 (2004). [CrossRef] [PubMed]
  20. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Bocarra, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13, 6286-6295 (2005). [CrossRef] [PubMed]
  21. K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and C. Boccara, “Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 7, 368-373 (2005). [CrossRef]
  22. B. Laude, A. De Martino, B. Drevillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637-6645 (2002). [CrossRef] [PubMed]
  23. G. Moneron, A.-C. Bocarra, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30, 1351-1353 (2005). [CrossRef] [PubMed]
  24. J. Moreau, V. Lorlette, and A.-C. Bocarra, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. II. Instrument and results,” Appl. Opt. 42, 3811-3818 (2003). [CrossRef] [PubMed]
  25. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387-1392 (2005). [CrossRef] [PubMed]
  26. A. V. Zvyagin, “Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space,” Opt. Commun. 242, 97-108 (2004). [CrossRef]
  27. A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 7, 350-356 (2005). [CrossRef]
  28. B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14, 7661-7669 (2006). [CrossRef] [PubMed]
  29. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  30. F. Dubois, M.-L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131-1139 (2004). [CrossRef] [PubMed]
  31. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence tomography,” Appl. Opt. 34, 5699-5707 (1995). [CrossRef] [PubMed]
  32. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathe, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field coherence tomography,” Opt. Lett. 29, 736-738 (2004). [CrossRef] [PubMed]
  33. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, and T. Lasser, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22, 1369-1379 (2005). [CrossRef]
  34. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, and T. Lasser, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22, 1380-1388 (2005). [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1980), Chap. 10.5.2, pp. 524-526.
  36. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  37. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “A digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt. 42, 204-217 (2003). [CrossRef] [PubMed]
  38. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114-116 (2000). [CrossRef]
  39. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717-754 (2004). [CrossRef]
  40. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349-357 (1959). [CrossRef]
  41. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series (MIT, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited