OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 2 — Feb. 1, 2009
  • pp: 403–412

Multispectral intensity diffraction tomography: single material objects with variable densities

Mark A. Anastasio, Qiaofeng Xu, and Daxin Shi  »View Author Affiliations

JOSA A, Vol. 26, Issue 2, pp. 403-412 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A reconstruction theory for multispectral intensity diffraction tomography (I-DT) is established and investigated for use with single material objects whose dispersion characteristics are known a priori. Instead of varying the object-to-detector distance, as prescribed by the original I-DT method and other classic in-line holographic reconstruction methods, the temporal frequency of the illuminating plane wave represents the degree of freedom of the imaging system that is varied to acquire two independent intensity measurements at each tomographic view angle. Unlike previous multispectral I-DT methods, the proposed method does not require a nondispersive assumption. A computer-simulation study is presented to demonstrate and corroborate the method.

© 2009 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(290.3200) Scattering : Inverse scattering

ToC Category:
Imaging Systems

Original Manuscript: July 15, 2008
Revised Manuscript: October 16, 2008
Manuscript Accepted: October 23, 2008
Published: January 30, 2009

Mark A. Anastasio, Qiaofeng Xu, and Daxin Shi, "Multispectral intensity diffraction tomography: single material objects with variable densities," J. Opt. Soc. Am. A 26, 403-412 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Gbur and E. Wolf, “Diffraction tomography without phase information,” Opt. Lett. 27, 1890-1892 (2002). [CrossRef]
  2. G. Gbur and E. Wolf, “Hybrid diffraction tomography without phase information,” J. Opt. Soc. Am. A 19, 2194-2202 (2002). [CrossRef]
  3. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969). [CrossRef]
  4. E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics, A.Consortini, ed. (Academic, 1996), pp. 83-110. [CrossRef]
  5. A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Probl. 2, 161-183 (1986). [CrossRef]
  6. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289-2302 (2003). [CrossRef] [PubMed]
  7. P. McMahon, A. Peele, D. Paterson, K. A. Nugent, A. Snigirev, T. Weitkamp, and C. Rau, “X-ray tomographic imaging of the complex refractive index,” Appl. Phys. Lett. 83, 1480-1482 (2003). [CrossRef]
  8. P. Spanne, C. Raven, I. Snigireva, and A. Snigirev, “In-line holography and phase-contrast microtomography with high energy x-rays,” Phys. Med. Biol. 44, 741-750 (1999). [CrossRef] [PubMed]
  9. D. M. Paganin, Coherent X-Ray Optics (Oxford U. Press, 2006). [CrossRef]
  10. M. A. Anastasio and D. Shi, “On the relationship between intensity diffraction tomography and phase-contrast tomography,” Proc. SPIE 5535, 361-368 (2004). [CrossRef]
  11. M. Maleki and A. J. Devaney, “Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 10, 1086-1092 (1993). [CrossRef]
  12. T. Wedberg and J. Stamnes, “Quantitative imaging by optical diffraction tomography,” Opt. Rev. 2, 28-31 (1995). [CrossRef]
  13. P. Guo and A. J. Devaney, “Comparison of reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 22, 2338-2347 (2005). [CrossRef]
  14. M. H. Maleki and A. J. Devaney, “Noniterative reconstruction of complex-valued objects from two intensity measurements,” Opt. Eng. (Bellingham) 33, 3243-3253 (1994). [CrossRef]
  15. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165-176 (2001). [CrossRef]
  16. A. J. Devaney and A. Schatzberg, “The coherent optical tomographic microscope,” Proc. SPIE 1767, 62-71 (1992). [CrossRef]
  17. F. Charrire, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006). [CrossRef]
  18. A. S. T. Beetz and C. Jacobsen, “Soft x-ray diffraction tomography: simulations and first experimerimental results,” J. Phys. IV 104, 31-34 (2003).
  19. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329-336 (2000). [CrossRef]
  20. M. A. Anastasio, D. Shi, Y. Huang, and G. Gbur, “Image reconstruction in spherical wave intensity diffraction tomography,” J. Opt. Soc. Am. A 22, 2651-2661 (2005). [CrossRef]
  21. D. Shi and M. A. Anastasio, “Off-axis holographic tomography for diffracting scalar wavefields,” Phys. Rev. E 73, 016612 (2006). [CrossRef]
  22. D. Shi and M. A. Anastasio, “Intensity diffraction tomography with fixed detector plane,” Opt. Eng. (Bellingham) 46, 107003 (2007). [CrossRef]
  23. M. A. Anastasio, D. Shi, and G. Gbur, “Multispectral intensity diffraction tomography reconstruction theory: quasi-nondispersive objects,” J. Opt. Soc. Am. A 23, 1359-1368 (2006). [CrossRef]
  24. T. E. Gureyev, S. Mayo, S. W. Wilkins, D. Paganin, and A. W. Stevenson, “Quantitative in-line phase-contrast imaging with multienergy x rays,” Phys. Rev. Lett. 86, 5827-5830 (2001). [CrossRef] [PubMed]
  25. S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79-96 (2002). [CrossRef] [PubMed]
  26. T. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129-134 (2007). [CrossRef]
  27. L. Turner, B. Dhal, J. Hayes, A. Mancuso, K. Nugent, D. Paterson, R. Scholten, C. Tran, and A. Peele, “X-ray phase imaging: demonstration of extended conditions for homogeneous objects,” Opt. Express 12, 2960-2965 (2004). [CrossRef] [PubMed]
  28. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33-40 (2002). [CrossRef] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  30. M. A. Anastasio and X. Pan, “Computationally efficient and statistically robust image reconstruction in 3D diffraction tomography,” J. Opt. Soc. Am. A 17, 391-400 (2000). [CrossRef]
  31. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336-350 (1982). [CrossRef] [PubMed]
  32. S. Pan and A. Kak, “A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered backpropagation,” IEEE Trans. Acoust., Speech, Signal Process. 31, 1262-1275 (1983). [CrossRef]
  33. D. Shi, M. A. Anastasio, Y. Huang, and G. Gbur, “Half-scan and single-plane intensity diffraction tomography for phase objects,” Phys. Med. Biol. 49, 2733-2752 (2004). [CrossRef] [PubMed]
  34. G. R. Fowles, Introduction to Modern Optics (Dover, 1989).
  35. B. Chen and J. Stamnes, “Validity of diffraction tomography based on the first-Born and first-Rytov approximations,” Appl. Opt. 37, 2996-3006 (1998). [CrossRef]
  36. R. Bernier and H. H. Arsenault, “Deconvolution of two-dimensional images with zeros in the transfer functon,” Appl. Opt. 30, 5163-5168 (1991). [CrossRef] [PubMed]
  37. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998). [CrossRef]
  38. X. Pan, “A unified reconstruction theory for diffraction tomography with considerations of noise control,” J. Opt. Soc. Am. A 15, 2312-2326 (1998). [CrossRef]
  39. M. A. Anastasio and X. Pan, “Investigation of the noise properties of a new class of reconstruction methods in diffraction tomography,” Int. J. Imaging Syst. Technol. 10, 437-446 (1999). [CrossRef]
  40. G. Gbur, M. A. Anastasio, Y. Huang, and D. Shi, “Spherical-wave intensity diffraction tomography,” J. Opt. Soc. Am. A 22, 230-238 (2005). [CrossRef]
  41. Y. Huang and M. A. Anastasio, “Statistically principled use of in-line measurements in intensiy diffraction tomography,” J. Opt. Soc. Am. A 24, 626-642 (2007). [CrossRef]
  42. E. Clarkson and H. H. Barrett, “Symmetry properties of an imaging transform and consistency conditions in image space,” Phys. Med. Biol. 43, 1039-1048 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited