OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 489–496

Coupled-mode analysis of Bragg-reflection filters based on asymmetric nonlinear dual-core fibers

Florence Y.M. Chan, Kiyotoshi Yasumoto, and P. Shum  »View Author Affiliations

JOSA A, Vol. 26, Issue 3, pp. 489-496 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a Bragg-reflection grating coupler using a nonlinear dual-core fiber with a long-period grating (LPG) and a fiber Bragg grating (FBG) inscribed in different cores. The LPG couples light from the primary core to the cladding, while the FBG operating in reflection acts to drop the channel from the secondary core. The coupler is nonreflective along the launching core. Theoretical analysis of this structure demonstrates a design for obtaining a flat-top bandpass filter with high reflectivity, steep band transitions, and negligible sidelobes. By launching an intense pump beam into the individual cores, a switchable and a wavelength tunable passband can be achieved. The results demonstrate the usefulness of the device as a grating-based all-optical element.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.1480) Optical devices : Bragg reflectors
(350.2770) Other areas of optics : Gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 9, 2008
Revised Manuscript: November 23, 2008
Manuscript Accepted: November 25, 2008
Published: February 6, 2009

Florence Y. M. Chan, Kiyotoshi Yasumoto, and P. Shum, "Coupled-mode analysis of Bragg-reflection filters based on asymmetric nonlinear dual-core fibers," J. Opt. Soc. Am. A 26, 489-496 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995). [CrossRef]
  2. T. Erdogan, T. A. Strasser, M. A. Milbrodt, E. J. Laskowski, C. H. Henry, and G. E. Kohnke, “Integrated-optical Mach-Zehnder add-drop filter fabricated by a single UV-induced grating exposure,” Appl. Opt. 36, 7838-7845 (1997). [CrossRef]
  3. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157, 249-264 (1998). [CrossRef]
  4. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  5. A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81-82 (1999). [CrossRef]
  6. M. Das and K. Thyagarajan, “Wavelength-division multiplexing isolation filter using concatenated chirped long period gratings,” Opt. Commun. 197, 67-71 (2001). [CrossRef]
  7. S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003). [CrossRef]
  8. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606-1612 (1998). [CrossRef]
  9. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002). [CrossRef]
  10. J. Lauzon and A. Chandonnet, “Grating-assisted fused fiber filter,” in Proceedings of the 11th International Conference on Integrated Optics and Optical Fiber Communications and 23rd European Conference on Optical Communications (Institution of Engineering and Technology, 1997), Vol. 448, pp. 169-172.
  11. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 4 of 2000 Technical Digest Series (OSA, 2000), pp. 28-30, paper FB5.
  12. F. Y. M. Chan and K. S. Chiang, “Transfer-matrix method for the analysis of two parallel dissimilar non-uniform long-period fiber gratings,” J. Lightwave Technol. 24, 1008-1018 (2006). [CrossRef]
  13. P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36, 251-252 (2000). [CrossRef]
  14. B. Ortega and L. Dong, “Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber,” J. Lightwave Technol. 17, 123-128 (1999). [CrossRef]
  15. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996). [CrossRef]
  16. J. L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180-182 (1994). [CrossRef] [PubMed]
  17. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996). [CrossRef] [PubMed]
  18. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997). [CrossRef] [PubMed]
  19. A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007). [CrossRef]
  20. Y. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Resonant optical nonlinearity measurement of Yb3+/Al3+ codoped optical fibers by use of a long-period fiber grating pair,” Opt. Lett. 27, 580-582 (2002). [CrossRef]
  21. F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244, 233-243 (2005). [CrossRef]
  22. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  23. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267-1277 (1972). [CrossRef]
  24. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nichimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase modulation method with depolarized pump light,” Opt. Lett. 20, 988-990 (1995). [CrossRef] [PubMed]
  25. D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14, 3763-3766 (2006). [CrossRef] [PubMed]
  26. M. Imai, S. Sato, and N. Kita, “All-optical switching of a nonlinear fiber-optic grating coupler utilizing cross-phase modulation of intense pump pulse at 1.55 μm,” in Proceedings of the 5th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim2003), paper TH4A.
  27. H. An, B. Ashton, and S. Fleming, “Long-period-grating-assisted optical add-drop filter based on mismatched twin-core photosensitive-cladding fiber,” Opt. Lett. 29, 343-345 (2004). [CrossRef] [PubMed]
  28. K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, “Pototwritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329-3331 (1997). [CrossRef]
  29. S. B. Poole and J. D. Love, “Single-core fibre to twin-core fibre connector,” Electron. Lett. 27, 1559-1560 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited