OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 509–516

Mode analysis and signal restoration with Kravchuk functions

Kurt Bernardo Wolf  »View Author Affiliations


JOSA A, Vol. 26, Issue 3, pp. 509-516 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000509


View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When a continuous-signal field is sampled at a finite number N of equidistant sensor points, the N resulting data values can yield information on at most N oscillator mode components, whose coefficients should in turn restore the sampled signal. We compare the fidelity of the mode analysis and synthesis in the orthonormal basis of N-point Kravchuk functions with those in the basis of sampled Hermite–Gauss functions. The scale between the two bases is calibrated on the ground state of the field. We conclude that mode analysis is better approximated in the nonorthogonal sampled Hermite–Gauss basis, while signal restoration in the Kravchuk basis is exact.

© 2009 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: August 28, 2008
Manuscript Accepted: December 8, 2008
Published: February 12, 2009

Citation
Kurt Bernardo Wolf, "Mode analysis and signal restoration with Kravchuk functions," J. Opt. Soc. Am. A 26, 509-516 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-3-509


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Luenberger, Optimization by Vector Space Methods (Wiley, 1969).
  2. J.-B. Martens, “The Hermite transform--theory,” IEEE Trans. Acoust., Speech, Signal Process. 38, 1607-1618 (1990). [CrossRef]
  3. N. Tanguy, P. Vilbé, and L. C. Calvez, “Optimum choice of free parameter in orthonormal approximations,” IEEE Trans. Autom. Control 40, 1811-1813 (1995). [CrossRef]
  4. A. C. den Brinker and H. J. W. Belt, “Optimal free parameters in orthonormal approximations,” IEEE Trans. Signal Process. 46, 2081-2087 (1998). [CrossRef]
  5. A. C. den Brinker and B. E. Sarroukh, “Modulated Hermite series expansion and time-bandwidth product,” Signal Process. 80, 243-250 (2000). [CrossRef]
  6. T. Alieva and M. J. Bastiaans, “Mode analysis through the fractional transforms in optics,” Opt. Lett. 24, 1206-1208 (1999). [CrossRef]
  7. T. Alieva and K. B. Wolf, “Finite mode analysis through harmonic waveguides,” J. Opt. Soc. Am. A 17, 1482-1484 (2000). [CrossRef]
  8. N. M. Atakishiyev and K. B. Wolf, “Fractional Fourier-Kravchuk transform,” J. Opt. Soc. Am. A 14, 1467-1477 (1997). [CrossRef]
  9. N. M. Atakishiyev, L. E. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” J. Comput. Appl. Math. 107, 73-95 (1999). [CrossRef]
  10. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Finite models of the oscillator,” Phys. Part. Nucl. 36, 521-555 (2005).
  11. B. E. Sarroukh, “Signal analysis representation tools,” Ph. D. thesis (Technische Universiteit Eindhoven, The Netherlands, 2001).
  12. K. B. Wolf and G. Krötzsch, “Geometry and dynamics in the fractional discrete Fourier transform,” J. Opt. Soc. Am. A 24, 651-658 (2007). [CrossRef]
  13. L. C. Biedenharn and J. D. Louck, “Angular momentum in quantum mechanics,” in Encyclopedia of Mathematics and Its Applications, G.-C.Rota, ed. (Addison-Wesley, 1981); Sec. 3.6.
  14. M. Krawtchouk, “Sur une généralization des polinômes d'Hermite,” C. R. Acad. Sci. Paris 189, 620-622 (1929).
  15. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Contraction of the finite one-dimensional oscillator,” Int. J. Mod. Phys. A 18, 317-327 (2003). [CrossRef]
  16. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, “Finite two-dimensional oscillator. I: The Cartesian model,” J. Phys. A 34, 9381-9398 (2001). [CrossRef]
  17. K. B. Wolf and T. Alieva, “Rotation and gyration of finite two-dimensional modes,” J. Opt. Soc. Am. A 25, 365-370 (2008). [CrossRef]
  18. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, “Finite two-dimensional oscillator. II: The radial model,” J. Phys. A 34, 9399-9415 (2001). [CrossRef]
  19. N. M. Atakishiyev, A. U. Klimyk, and K. B. Wolf, “Finite q-oscillator,” J. Phys. A 37, 5569-5587 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited