OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 548–558

First-order model of thermal lensing in a virtual eye

Rebecca L. Vincelette, Robert J. Thomas, Benjamin A. Rockwell, Clifton D. Clark, III, and Ashley J. Welch  »View Author Affiliations

JOSA A, Vol. 26, Issue 3, pp. 548-558 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An A B C D beam-propagation method was used to build a first-order mathematical model of a thermal lens effect from a near-infrared laser beam in water and ocular media. The model was found to fit experimental z-scan data best when the thermo-optic coefficient d n d T of liquid water at 292 K was 4.46 × 10 5 K 1 . The physiological parameters of the human eye were simulated in a simple eye model using this fitted d n d T value. Conservative model simulations for 1150 and 1318 nm laser radiation include parameter sets used in experimental ocular exposures performed by Zuclich et al. [Health Phys. 92, 15 (2007)] to illustrate the transient response of the thermal lens approaching the limits of the retinal damage thresholds for equivalent laser radiation sources.

© 2009 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(330.3350) Vision, color, and visual optics : Vision - laser damage

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: July 29, 2008
Revised Manuscript: December 9, 2008
Manuscript Accepted: December 10, 2008
Published: February 18, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Rebecca L. Vincelette, Robert J. Thomas, Benjamin A. Rockwell, Clifton D. Clark III, and Ashley J. Welch, "First-order model of thermal lensing in a virtual eye," J. Opt. Soc. Am. A 26, 548-558 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Vincelette, B. A. Rockwell, R. J. Thomas, D. J. Lund, and A. J. Welch, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: 1150-1350 nm region,” J. Biomed. Opt. 13, 054005 (2008). [CrossRef] [PubMed]
  2. C. D. Clark, L. J. Irvin, P. D. S. Maseberg, G. D. Buffington, R. J. Thomas, M. L. Edwards, and J. Stolarski, “BTEC Thermal Model,” Report AFRL-RH-BR-TR-2008-0006 (Air Force Research Laboratory, San Antonio, 2008).
  3. J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: Proposed revisions to MPEs,” Health Phys. 92, 15-23 (2007). [CrossRef]
  4. D. J. Lund, P. Edsall, and B. E. Stuck, “Spectral dependence of retinal thermal injury,” Proc. SPIE 3902, 22-34 (2000). [CrossRef]
  5. D. J. Lund and P. Edsall, “Action spectrum for retinal thermal injury,” Proc. SPIE 3591, 324-334 (1999). [CrossRef]
  6. J. P. Gordon, R. C. Leite, R. S. Moore, S. P. Porto, and J. R. Whinnery, “Long transient effects of lasers with inserted liquid samples,” J. Appl. Phys. 36, 3-8 (1965). [CrossRef]
  7. D. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168-5180 (1999). [CrossRef]
  8. D. I. Kovsh, D. J. Hagan, and E. W. Van Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Express 4, 315-327 (1999). [CrossRef] [PubMed]
  9. H. L. Fang and R. Swofford, “Analysis of the thermal lensing effect for an optically thick sample-A revised model,” J. Appl. Phys. 50, 6609-6615 (1979). [CrossRef]
  10. W. D St. John, B. Taheri, J. P. Wicksted, R. C. Powell, D. H. Blackburn, and D. C. Cranmer, “Time-dependent thermal lensing in lead oxide-modified silicate glass,” J. Opt. Soc. Am. B 9, 610-616 (1992). [CrossRef]
  11. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989), pp. 106-123.
  12. M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1-18 (1996). [CrossRef]
  13. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nmto200-μm wavelength region,” Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  14. A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761-774 (1998). [CrossRef]
  15. W. Wagner and A. Kruse, Properties of Water and Steam: The Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties (Springer-Verlag, 1998), p. 150.
  16. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990). [CrossRef]
  17. E. F. Maher, “Transmission and absorption coefficients for the ocular media of the Rhesus monkey,” Tech. Rep. SAM-TR-78-32 (USAF School of Aerospace Medicine, 1978).
  18. R. L. Vincelette, R. J. Thomas, B. A. Rockwell, and A. J. Welch, “A comparison of a first-order thermal lensing model to a closed aperture Z-scan for the propagation of light in ocular media,” Proc. SPIE 6084, 0G1-0G9 (2006).
  19. R. J. Thomas, R. L. Vincelette, G. D. Buffington, A. D. Strunk, M. A. Edwards, B. A. Rockwell, and A. J. Welch, “A first order model of thermal lensing of laser propagation in the eye and implications for laser safety,” in International Laser Safety Conference (Laser Institute of America, 2005), 147-154.
  20. R. L. Vincelette, R. J. Thomas, B. A. Rockwell, and A. J. Welch, “Thermal lensing in the ocular media,” Proc. SPIE 6435, 0C1-7 (2007).
  21. R. J. Thomas, R. L. Vincelette, C. D. Clark, III, J. Stolarski, L. J. Irvin, and G. D. Buffington, “Propagation effects in the assessment of laser damage thresholds to the eye and skin,” Proc. SPIE 6435, A1-12 (2007).
  22. W. C. Lin, “Dynamics of tissue optics during laser heating,” Ph.D. dissertation (University of Texas, Austin, Texas, 1997).
  23. M. A. Porras, J. Alda, and E. Bernabeu, “Nonlinear propagation of arbitrary laser beams by means of the generalized ABCD formalism,” Appl. Opt. 32, 5885-5892 (1993). [CrossRef] [PubMed]
  24. P. A. Belanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196-198 (1991). [CrossRef] [PubMed]
  25. H. A. Wyld, Mathematical Methods for Physics (W. A. Benjamin, 1976), pp. 319-326.
  26. J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green's Functions (Hemisphere Publishing Corp., 1992), pp. 201-216.
  27. R. L. Swofford and J. Morrell, “Analysis of the repetitively pulsed dual-beam thermo-optical absorption spectrometer,” J. Appl. Phys. 49, 3667-3674 (1978). [CrossRef]
  28. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  29. D. A. Atchison and G. Smith, Optics of the Human Eye (Elsevier, 2002).
  30. G. Li, H. Zwick, B. Stuck, and D. J. Lund, “On the use of schematic eye models to estimate retinal image quality,” J. Biomed. Opt. 5, 307-314 (2000). [CrossRef] [PubMed]
  31. G. Westheimer, “The Eye: Including Central Nervous System Control of Eye Movements,” in Medical Physiology, Vol. 1, V.B.Mountcastle, ed., 14th ed. (C. V. Mosby Company, 1980), pp. 482-503.
  32. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400-409 (2005). [CrossRef] [PubMed]
  33. T. Okuno, M. Kojima, I. Hata, and D. H. Sliney, “Temperature rises in the crystalline lens from focal irradiation,” Health Phys. 88, 214-222 (2005). [CrossRef] [PubMed]
  34. J. A. Zuclich, D. J. Lund, B. E. Stuck, and P. R. Edsall, “Ocular effects and safety standard implications for high-power lasers in the 1.3-1.4 μm wavelength range,” (Air Force Research Laboratory, Laser Radiation Branch, San Antonio, Texas, 2004).
  35. M. Motamedi, A. J. Welch, W. F. Cheong, S. A. Ghaffari, and O. T. Tan, “Thermal lensing in biological medium,” IEEE J. Quantum Electron. 24, 693-696 (1988). [CrossRef]
  36. C. E. Buffett and M. D. Morris, “Convective effects in thermal lens spectroscopy,” Appl. Spectrosc. 37, 455-458 (1983). [CrossRef]
  37. E. F. S. Alfonso, M. A. R. Revert, M. C. G. Alvarez-Coque, and G. R. Ramos, “Reduction of convective low-frequency noise in thermal lens spectrometry,” Appl. Spectrosc. 44, 1501-1507 (1990). [CrossRef]
  38. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1-7 (2006). [CrossRef]
  39. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLS to correct spherical aberration,” Invest. Ophthalmol. Visual Sci. 47, 4651-4658 (2006). [CrossRef]
  40. E. J. Fernandez, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213-6225 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited