OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 559–565

Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane

Tian Sang, Li Wang, Shiyin Ji, Yiqin Ji, Hong Chen, and Zhanshan Wang  »View Author Affiliations


JOSA A, Vol. 26, Issue 3, pp. 559-565 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000559


View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using the equivalent eigenvalue equation of a waveguide grating, the mirror effect ( Δ λ λ > 15 % ) with very high reflectivity ( R > 99 % ) based on guided-mode resonance (GMR) effects in a poly-Si subwavelength periodic membrane is obtained, and the reflection performance of the poly-Si subwavelength periodic membrane is systematically studied. It is shown that the equivalent eigenvalue equation of a waveguide grating can provide a solid starting point for designing the broadband grating with very high reflectivity. The physical mechanisms of broadband reflection of the strongly modulated waveguide grating structures are investigated theoretically and the important role of multiple GMRs for a broad reflection band is discussed in detail. By using the overlap of a resonance pair in which leaky waveguide modes TE 0 and TE 1 are excited by the strong first diffraction order, enhanced reflection occurs and a flat reflection band with high reflectivity can be achieved by adding a poly-Si thin film under the grating. The grating period, the grating thickness, and the layer thickness do not change the mirror effect except for the incident angle and the filling factor. A flat band with high reflectivity centered near 1.55 μ m is designed to demonstrate this concept.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.3990) Optical devices : Micro-optical devices
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 3, 2008
Revised Manuscript: December 20, 2008
Manuscript Accepted: December 28, 2008
Published: February 18, 2009

Citation
Tian Sang, Li Wang, Shiyin Ji, Yiqin Ji, Hong Chen, and Zhanshan Wang, "Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane," J. Opt. Soc. Am. A 26, 559-565 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-3-559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396-402 (1902).
  2. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985). [CrossRef]
  3. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607-619 (1986). [CrossRef]
  4. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  5. D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005). [CrossRef]
  6. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617-1626 (1997). [CrossRef]
  7. P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997). [CrossRef]
  8. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  9. A. Mizutani, H. Kikuta, and K. Iwata, “Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching,” J. Opt. Soc. Am. A 22, 355-360 (2005). [CrossRef]
  10. T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13, 4645-4650 (2005). [CrossRef] [PubMed]
  11. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discovery 1, 515-528 (2002). [CrossRef]
  12. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627-1636 (1997). [CrossRef]
  13. Y. Nie, Z. Wang, and C. Lai, “Broad-linewidth bandstop filters with multilayer grating structure,” Proc. SPIE 4927, 357-365 (2002). [CrossRef]
  14. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23, 700-702 (1998). [CrossRef]
  15. L. Pilozzi, A. D. Andrea, and H. Fenniche, “Mirror effect at the Brewster angle in semiconductor rectangular gratings,” Phys. Rev. B 64, 235319 (2001). [CrossRef]
  16. C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004). [CrossRef]
  17. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004). [CrossRef]
  18. C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006). [CrossRef]
  19. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584-586 (2001). [CrossRef]
  20. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661-5674 (2004). [CrossRef] [PubMed]
  21. Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885-1891 (2004). [CrossRef] [PubMed]
  22. K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006). [CrossRef]
  23. J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006). [CrossRef]
  24. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456-3462 (2008). [CrossRef] [PubMed]
  25. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  26. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613 (1993). [CrossRef] [PubMed]
  27. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  28. Y. Ding and R. Magnusson, “Doubly-resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135-1137 (2004). [CrossRef] [PubMed]
  29. Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14, 1091-1093 (2002). [CrossRef]
  30. Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006). [CrossRef]
  31. T. K. Gaylord and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894-937 (1985). [CrossRef]
  32. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  33. M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894-896 (2007). [CrossRef] [PubMed]
  34. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414-2420 (1995). [CrossRef] [PubMed]
  35. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” Proc. SPIE 3133, 273-286 (1997). [CrossRef]
  36. J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Rigorous reflectance performance analysis of Si3N4 self-suspended subwavelength gratings,” Opt. Commun. 270, 233-237 (2007). [CrossRef]
  37. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556-1558 (1998). [CrossRef]
  38. T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited