OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 3 — Mar. 1, 2009
  • pp: 576–588

Tight focusing of vortex beams in presence of primary astigmatism

Rakesh Kumar Singh, P. Senthilkumaran, and Kehar Singh  »View Author Affiliations

JOSA A, Vol. 26, Issue 3, pp. 576-588 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1826 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The tight focusing of vortex carrying beams is studied using the Debye–Wolf diffraction integral in the presence of primary astigmatism. The roles of topological charge, polarization distribution of the input beam, and handedness of the beam polarization are investigated in the intensity distribution of the focal plane of a high-numerical-aperture lens. The effect of tight focusing in the presence of astigmatism on the dark core of the azimuthally polarized beam is also investigated and compared with the dark core of a circularly polarized vortex beam. The effect of an aberration has been discussed in the context of the fluorescent spot size in the focal plane of a stimulated emission depletion microscope for two different polarization setups.

© 2009 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.0140) Lasers and laser optics : Lasers and laser optics
(260.0260) Physical optics : Physical optics
(260.5430) Physical optics : Polarization
(080.4865) Geometric optics : Optical vortices

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 20, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: December 20, 2008
Published: February 19, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Rakesh Kumar Singh, P. Senthilkumaran, and Kehar Singh, "Tight focusing of vortex beams in presence of primary astigmatism," J. Opt. Soc. Am. A 26, 576-588 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” Trans. Opt. Inst. 1, 1-36 (1919).
  2. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  3. A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561-B1565 (1965). [CrossRef]
  4. R. Luneburg, Mathematical Theory of Optics (U. of California Press, 1966).
  5. K. Bahlmann and S. W. Hell, “Electric field depolarization in high aperture focusing with emphasis on annular apertures,” J. Microsc. 200, 59-67 (2000). [CrossRef] [PubMed]
  6. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579-1587 (2001). [CrossRef]
  7. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11, 2747-2752 (2003). [CrossRef] [PubMed]
  8. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  9. E. Engel, N. Huse, T. A. Klar, and S. W. Hell, “Creating λ/3 focal holes with a Mach-Zehnder interferometer,” Appl. Phys. B 77, 11-17 (2003). [CrossRef]
  10. L. E. Helseth, “Optical vortices in focal regions,” Opt. Commun. 229, 85-91 (2004). [CrossRef]
  11. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605-3617 (2004). [CrossRef] [PubMed]
  12. L. E. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1-8 (2006). [CrossRef]
  13. N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263-268 (2007). [CrossRef]
  14. Y. Iketaki, T. Watanabe, N. Bokor, and M. Fujii, “Investigation of the center intensity of first- and second-order Laguerre-Gaussian beams with linear and circular polarization,” Opt. Lett. 32, 2357-2359 (2007). [CrossRef] [PubMed]
  15. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007). [CrossRef] [PubMed]
  16. Z. Bomzon and M. Gu, “Space-variant geometrical phases in focused cylindrical light beams,” Opt. Lett. 32, 3017-3019 (2007). [CrossRef] [PubMed]
  17. P. Török, P. R. T. Munro, and Em. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507-523 (2008). [CrossRef] [PubMed]
  18. S. S. Sherif, M. R. Foreman, and P. Török, “Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system,” Opt. Express 16, 3397-3407 (2008). [CrossRef] [PubMed]
  19. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16, 4567-4581 (2008). [CrossRef] [PubMed]
  20. R. Martínez-Herrero and P. M. Mejías, “Propagation of light fields with radial or azimuthal polarization distribution at a transverse plane,” Opt. Express 16, 9021-9033 (2008). [CrossRef] [PubMed]
  21. W. Gao, “Effects of coherence and vector properties of the light on the resolution limit in stimulated emission depletion fluorescence microscopy,” J. Opt. Soc. Am. A 25, 1378-1382 (2008). [CrossRef]
  22. Z. Zhang, J. Pu, and X. Wang, “Tight focusing of radially and azimuthally polarized vortex beams through a uniaxial birefringent crystal,” Appl. Opt. 47, 1963-1967 (2008). [CrossRef] [PubMed]
  23. T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613 (2001). [CrossRef]
  24. K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” New J. Phys. 8, 1-8 (2006). [CrossRef]
  25. Y. Zhao, G. Milne, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Quantitative force mapping of an optical vortex trap,” Appl. Phys. Lett. 92, 161111 (2008). [CrossRef]
  26. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 1-20 (2007). [CrossRef]
  27. L.Allen L, S.M.Barnett, and M.J.Padgett, eds., Optical Angular Momentum (Institute of Physics, 2003). [CrossRef]
  28. M. D. Levenson, T. Ebihara, G. Dai, Y. Morikawa, N. Hayashi, and S. M. Tan, “Optical vortex masks for via levels,” J. Microlithogr., Microfabr., Microsyst. 3, 293-304 (2004). [CrossRef]
  29. B. R. Boruah and M. A. Neil, “Susceptibility to and correction of azimuthal aberrations in singular light beams,” Opt. Express 14, 10377-10385 (2006). [CrossRef] [PubMed]
  30. V. N. Mahajan, Optical Imaging and Aberrations, Part 2: Wave and Diffraction Optics (SPIE, 2001).
  31. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focusing by an astigmatic lens,” Opt. Commun. 241, 237-247 (2004). [CrossRef]
  32. A. Wada, T. Ohtani, Y. Miyamoto, and M. Takeda, “Propagation analysis of the Laguerre-Gaussian beam with astigmatism,” J. Opt. Soc. Am. A 22, 2746-2755 (2005). [CrossRef]
  33. R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun. 270, 128-138 (2007). [CrossRef]
  34. R. Kant, “An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: astigmatism and coma,” J. Mod. Opt. 42, 299-320 (1995). [CrossRef]
  35. D. P. Biss and T. G. Brown, “Primary aberrations in focused radially polarized vortex beams,” Opt. Express 12, 384-393 (2004). [CrossRef] [PubMed]
  36. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes, “Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system,” J. Opt. Soc. Am. A 20, 2281-2292 (2003). [CrossRef]
  37. R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam,” J. Opt. Soc. Am. A 25, 1307-1318 (2008). [CrossRef]
  38. R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary coma on the focusing of a Laguere-Gaussian beam by a high numerical aperture system; vectorial diffraction theory,” J. Opt. A, Pure Appl. Opt. 10, 075008 (2008). [CrossRef]
  39. Y. Iketaki, T. Watanabe, M. Sakai, S. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng. (Bellingham) 44, 033602 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited