OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 1035–1048

Zernike radial slope polynomials for wavefront reconstruction and refraction

Jayoung Nam, Larry N. Thibos, and D. Robert Iskander  »View Author Affiliations

JOSA A, Vol. 26, Issue 4, pp. 1035-1048 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ophthalmic wavefront sensors typically measure wavefront slope, from which wavefront phase is reconstructed. We show that ophthalmic prescriptions (in power-vector format) can be obtained directly from slope measurements without wavefront reconstruction. This is achieved by fitting the measurement data with a new set of orthonormal basis functions called Zernike radial slope polynomials. Coefficients of this expansion can be used to specify the ophthalmic power vector using explicit formulas derived by a variety of methods. Zernike coefficients for wavefront error can be recovered from the coefficients of radial slope polynomials, thereby offering an alternative way to perform wavefront reconstruction.

© 2009 Optical Society of America

OCIS Codes
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: July 11, 2008
Revised Manuscript: January 15, 2009
Manuscript Accepted: February 5, 2009
Published: March 26, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Jayoung Nam, Larry N. Thibos, and D. Robert Iskander, "Zernike radial slope polynomials for wavefront reconstruction and refraction," J. Opt. Soc. Am. A 26, 1035-1048 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Goss and T. Grosvenor, “Reliability of refraction--a literature review,” J. Am. Optom. Assoc. 67, 619-630 (1996). [PubMed]
  2. G. Smith, “Refraction and visual acuity measurements: what are their measurement uncertainties?” Clin. Exp. Optom. 89, 66-72 (2006). [CrossRef] [PubMed]
  3. M. Berman, P. Nelson, and B. Caden, “Objective refraction: comparison of retinoscopy and automated techniques,” Am. J. Optom. Physiol. Opt. 61, 204-209 (1984). [PubMed]
  4. M. A. Bullimore, R. E. Fusaro, and C. W. Adams, “The repeatability of automated and clinician refraction,” Optom. Vision Sci. 75, 617-622 (1998). [CrossRef]
  5. K. Pesudovs and H. S. Weisinger, “A comparison of autorefractor performance,” Optom. Vision Sci. 81, 554-558 (2004). [CrossRef]
  6. G. Walsh, W. N. Charman, and H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987-992 (1984). [CrossRef] [PubMed]
  7. M. J. Collins, C. F. Wildsoet, and D. A. Atchison, “Monochromatic aberrations and myopia,” Vision Res. 35, 1157-1163 (1995). [CrossRef] [PubMed]
  8. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  9. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  10. A. Guirao and D. R. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vision Sci. 80, 36-42 (2003). [CrossRef]
  11. X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310-321 (2004). [CrossRef]
  12. A. B. Watson and A. J. Ahumada, Jr., “Predicting visual acuity from wavefront aberrations,” J. Vision 8, 11-19 (2008). [CrossRef]
  13. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004). [CrossRef]
  14. D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27, 245-255 (2007). [CrossRef]
  15. ANSI, “American National Standards for Ophthalmics--Methods for reporting optical aberrations of eyes,” American National Standards InstituteANSI Z80.28 (2004).
  16. Online Etymology Dictionary (http://www.etymonline.com).
  17. The American Heritage Dictionary of the English Language, 4th ed. (Houghton Mifflin, 2000).
  18. T. C. Jenkins, “Aberrations of the eye and their effects on vision: 1. Spherical aberration,” Br. J. Physiol. Opt. 20, 59-91 (1963). [PubMed]
  19. L. N. Thibos, “Principles of Hartmann-Shack aberrometry,” J. Refract. Surg. 16, 563-565 (2000).
  20. C. Roberts, “The accuracy of 'power' maps to display curvature data in corneal topography systems,” Invest. Ophthalmol. Visual Sci. 35, 3525-3532 (1994).
  21. S. A. Klein and R. B. Mandell, “Shape and refractive powers in corneal topography,” Invest. Ophthalmol. Visual Sci. 36, 2096-2109 (1995).
  22. S. A. Klein and R. B. Mandell, “Axial and instantaneous power conversion in corneal topography,” Invest. Ophthalmol. Visual Sci. 36, 2155-2159 (1995).
  23. R. K. Maloney, S. J. Bogan, and G. O. Waring, 3rd, “Determination of corneal image-forming properties from corneal topography,” Am. J. Ophthalmol. 115, 31-41 (1993). [PubMed]
  24. D. R. Iskander, B. A. Davis, and M. J. Collins, “The skew ray ambiguity in the analysis of videokeratoscopic data,” Optom. Vision Sci. 84, 435-442 (2007). [CrossRef]
  25. L. N. Thibos, W. Wheeler, and D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom. Vision Sci. 74, 367-375 (1997). [CrossRef]
  26. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  27. L. N. Thibos, N. L. Himebaugh, and C. D. Coe, “Wavefront refraction,” in Borish's Clinical Refraction, W.J.Benjamin, ed. (Butterworth-Heinemann, 2006), pp. 765-789. [CrossRef]
  28. V. N. Mahajan, Optical Imaging and Aberrations, Part I: Ray Geometrical Optics (SPIE, 1998).
  29. H. Saunders, “A method for determining the mean value of refractive error,” Br. J. Physiol. Opt. 34, 1-11 (1980).
  30. R. Courant and D. Hilbert, Methods of Mathematical Physics, (Wiley, 1989).
  31. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge U. Press, 1999).
  32. A. G. Bennett and R. B. Rabbetts, Bennett & Rabbetts' Clinical Visual Optics (Butterworth-Heinemann, 1998).
  33. Strictly speaking, the equivalent quadratic introduced by Thibos is a paraboloid described by W2. If a=b, the family of surfaces comprises circular paraboloids; if a and b have the same sign, it comprises elliptic paraboloids; and if a and b have opposite signs, it comprises hyperbolic paraboloids.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited