OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 1055–1070

Recognition using information-optimal adaptive feature-specific imaging

Pawan K. Baheti and Mark A. Neifeld  »View Author Affiliations

JOSA A, Vol. 26, Issue 4, pp. 1055-1070 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an information-theoretic adaptive feature-specific imaging (AFSI) system for a M-class recognition task. The proposed system utilizes the recently developed task-specific information (TSI) framework to incorporate the knowledge from previous measurements and adapt the projection matrix at each step. The decision-making framework is based on sequential hypothesis testing. We quantify the number of measurements required to achieve a specified probability of misclassification ( P e ) , and we compare the performances of three approaches: the new TSI-based AFSI system, a previously reported statistical AFSI system, and static FSI (SFSI). The TSI-based AFSI system exhibits significant improvement compared with SFSI and statistical AFSI at low signal-to-noise ratio (SNR). It is shown that for M = 4 hypotheses, SNR = 20 dB and desired P e = 10 2 , TSI-based AFSI requires 3 times fewer measurements than statistical AFSI, and 16 times fewer measurements than SFSI. We also describe an extension of the proposed method that is suitable for recognition in the presence of nuisance parameters such as illumination conditions and target orientations.

© 2009 Optical Society of America

OCIS Codes
(110.1085) Imaging systems : Adaptive imaging
(110.1758) Imaging systems : Computational imaging
(110.3055) Imaging systems : Information theoretical analysis
(100.4995) Image processing : Pattern recognition, metrics

ToC Category:
Imaging Systems

Original Manuscript: September 8, 2008
Revised Manuscript: February 4, 2009
Manuscript Accepted: February 8, 2009
Published: March 31, 2009

Pawan K. Baheti and Mark A. Neifeld, "Recognition using information-optimal adaptive feature-specific imaging," J. Opt. Soc. Am. A 26, 1055-1070 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Cathey and E. R. Dowsky, “New paradigm for imaging systems,” Appl. Opt. 41, 6080-6092 (2002). [CrossRef] [PubMed]
  2. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1-12 (2003). [CrossRef]
  3. D. J. Brady, “Multiplex sensors and the constant radiance theorem,” Opt. Lett. 27, 16-18 (2002). [CrossRef]
  4. M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42, 3379-3389 (2003). [CrossRef] [PubMed]
  5. P. K. Baheti and M. A. Neifeld, “Feature-specific structured imaging,” Appl. Opt. 45, 7382-7391 (2006). [CrossRef] [PubMed]
  6. M. A. Neifeld, A. Ashok, and P. K. Baheti, “Task specific information for imaging system analysis,” J. Opt. Soc. Am. A 24, B25-B41 (2007). [CrossRef]
  7. M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1991), pp. 586-591. [CrossRef]
  8. P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell. 19, 711-720 (1997). [CrossRef]
  9. W. Zhao, R. Chellapa, P. J. Phillips, and A. Rosenfeld, “Face recognition: a literature survey,” ACM Comput. Surv. 35, 399-458 (2003). [CrossRef]
  10. H. H. Barrett, T. Gooley, K. Girodias, J. Rolland, T. White, and J. Lao, “Linear discriminants and image quality,” Image Vis. Comput. 10, 451-460 (1992). [CrossRef]
  11. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139-145 (1964). [CrossRef]
  12. A. Mahanalobis, B. V. K. Kumar, S. R. F. Sims, and J. Epperson, “Unconstrained correlation filters,” Appl. Opt. 33, 3751-3759 (1994). [CrossRef]
  13. B. Javidi, P. Réfrégier, and P. Willett, “Optimum receiver design for pattern recognition with nonoverlapping target and scene noise,” Opt. Lett. 18, 1660-1662 (1993). [CrossRef] [PubMed]
  14. A. Yuille, D. Cohen, and P. Hallinan, “Feature extraction from faces using deformable templates,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 1989), pp. 104-109.
  15. S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A convolutional neural network approach,” IEEE Trans. Neural Netw. 8, 98-113 (1997). [CrossRef] [PubMed]
  16. M. F. Duarte, M. A. Davenport, M. B. Wakin, and R. G. Baraniuk, “Sparse signal detection from incoherent projections,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2006), Vol. 3, pp. 14-19.
  17. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 43-52 (2006).
  18. N. P. Pitsianis, D. J. Brady, and X. Sun, “The quantized cosine transform for sensor-layer image compression,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JMA4.
  19. M. A. Neifeld and J. Ke, “Optical architectures for compressive imaging,” Appl. Opt. 46, 5293-5303 (2007). [CrossRef] [PubMed]
  20. H. S. Pal, D. Ganotra, and M. A. Neifeld, “Face recognition by using feature-specific imaging,” Appl. Opt. 44, 3784-3794 (2005). [CrossRef] [PubMed]
  21. P. K. Baheti and M. A. Neifeld, “Adaptive feature-specific imaging: a face recognition example,” Appl. Opt. 47, B21-B31 (2008), feature issue on Computational Optical Sensing and Imaging. [CrossRef] [PubMed]
  22. A. Wald, “Sequential analysis of statistical hypotheses,” Ann. Math. Stat. 16, 117-176 (1945). [CrossRef]
  23. P. Armitage, “Sequential analysis with more than two alternative hypotheses and its relation to discriminant function analysis,” J. R. Stat. Soc. Ser. A (Gen.) 12, 137-144 (1950).
  24. H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Series in Pure and Applied Optics (2004).
  25. S. Kay, Statistical Signal Processing--Detection Theory (Prentice-Hall, 1998).
  26. A. Jain, P. Moulin, M. I. Miller, and K. Ramchandran, “Information-theoretic bounds on target recognition performance based on degraded data,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1153-1166 (2002). [CrossRef]
  27. R. Battiti, “Using mutual information for selecting features in supervised neural net learning,” IEEE Trans. Neural Netw. 5, 537-550 (1994). [CrossRef] [PubMed]
  28. J. Novovicova, P. Somol, M. Haindl, and P. Pudil, “Conditional mutual information based feature selection for classification task,” in Proceedings of the 12th Iberoamerican Congress on Pattern Recognition (Springer-Verlag, 2007), pp. 417-426.
  29. N. A. Goodman, P. R. Venkata, and M. A. Neifeld, “Adaptive waveform design and sequential hypothesis testing for target recognition using cognitive radar,” IEEE J. Sel. Top. Signal Process. 1, 105-113 (2007). [CrossRef]
  30. J. R. Guerci and S. U. Pillai, “Adaptive transmission radar: the next wave,” in Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON, 2000), pp. 779-786.
  31. M. R. Bell, “Information theory and radar waveform design,” IEEE Trans. Inf. Theory 39, 1578-1597 (1993). [CrossRef]
  32. E. Marszalec, B. Martinkauppi, M. Soriano, and M. Pietikinen, “A physics-based face database for color research,” J. Electron. Imaging 9, 32-38 (2000). [CrossRef]
  33. A. Ashok, P. K. Baheti, and M. A. Neifeld, “Compressive imaging system design using task-specific information,” Appl. Opt. 9, 32-38 (2008).
  34. T. Cover and J. Thomas, Elements of Information Theory (Wiley, 1991). [CrossRef]
  35. D. P. Palomar and S. Verdu, “Gradient of mutual information in linear vector Gaussian channels,” IEEE Trans. Inf. Theory 52, 141-154 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited