OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 732–740

Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures

Andreas M. Kern and Olivier J.F. Martin  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 732-740 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000732


View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Among the most popular approaches used for simulating plasmonic systems, the discrete dipole approximation suffers from poorly scaling volume discretization and limited near-field accuracy. We demonstrate that transformation to a surface integral formulation improves scalability and convergence and provides a flexible geometric approximation allowing, e.g., to investigate the influence of fabrication accuracy. The occurring integrals can be solved quasi-analytically, permitting even rapidly changing fields to be determined arbitrarily close to a scatterer. This insight into the extreme near-field behavior is useful for modeling closely packed particle ensembles and to study “hot spots” in plasmonic nanostructures used for plasmon-enhanced Raman scattering.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(050.5745) Diffraction and gratings : Resonance domain
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 11, 2008
Manuscript Accepted: January 14, 2009
Published: March 6, 2009

Citation
Andreas M. Kern and Olivier J. F. Martin, "Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures," J. Opt. Soc. Am. A 26, 732-740 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-4-732

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited