OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 732–740

Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures

Andreas M. Kern and Olivier J.F. Martin  »View Author Affiliations

JOSA A, Vol. 26, Issue 4, pp. 732-740 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Among the most popular approaches used for simulating plasmonic systems, the discrete dipole approximation suffers from poorly scaling volume discretization and limited near-field accuracy. We demonstrate that transformation to a surface integral formulation improves scalability and convergence and provides a flexible geometric approximation allowing, e.g., to investigate the influence of fabrication accuracy. The occurring integrals can be solved quasi-analytically, permitting even rapidly changing fields to be determined arbitrarily close to a scatterer. This insight into the extreme near-field behavior is useful for modeling closely packed particle ensembles and to study “hot spots” in plasmonic nanostructures used for plasmon-enhanced Raman scattering.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(050.5745) Diffraction and gratings : Resonance domain
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: December 11, 2008
Manuscript Accepted: January 14, 2009
Published: March 6, 2009

Andreas M. Kern and Olivier J. F. Martin, "Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures," J. Opt. Soc. Am. A 26, 732-740 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377-445 (1908) (in German). [CrossRef]
  2. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  3. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  4. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  5. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, 2nd ed. (World Scientific, 2006).
  6. W.-H. Y. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103, 869-875 (1995). [CrossRef]
  7. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999). [CrossRef]
  8. T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103, 2394-2401 (1999). [CrossRef]
  9. E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224-1229 (2004). [CrossRef]
  10. J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, and F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21, 1330-1332 (1996). [CrossRef] [PubMed]
  11. P. J. Valle, F. Moreno, and J. M. Saiz, “Comparison of real- and perfect-conductor approaches for scattering by a cylinder on a flat substrate,” J. Opt. Soc. Am. A 15, 158-162 (1998). [CrossRef]
  12. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  13. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations,” IEEE Trans. Microwave Theory Tech. 23, 623-630 (1975). [CrossRef]
  14. P. Monk, Finite Element Methods for Maxwell's Equations (Oxford U. Press, 2003). [CrossRef]
  15. J. Song, C. Lu, W. Chew, and S. Lee, “Fast illinois solver code (FISC),” IEEE Antennas Propag. Mag. 40, 27-34 (1998). [CrossRef]
  16. J. M. Neilson and R. Bunger, “Surface integral equation analysis of quasi-optical launchers,” IEEE Trans. Plasma Sci. 30, 794-799 (2002). [CrossRef]
  17. Y.-H. Chu and W. C. Chew, “Large-scale computation for electrically small structures using surface-integral equation method,” Microwave Opt. Technol. Lett. 47, 525-530 (2005). [CrossRef]
  18. J. Jung and T. Sondergaard, “Green's function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008). [CrossRef]
  19. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002). [CrossRef]
  20. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988-9999 (2006). [CrossRef] [PubMed]
  21. C. W. Trueman and S. J. Kubina, “Fields of complex surfaces using wire grid modelling,” IEEE Trans. Magn. 27, 4262-4267 (1991). [CrossRef]
  22. J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719-1726 (2000). [CrossRef]
  23. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).
  24. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, IEEE Series on Electromagnetic Waves, 2nd ed. (IEEE, 1994).
  25. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  26. R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).
  27. S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409-418 (1982). [CrossRef]
  28. G. R. Cowper, “Gaussian quadrature formulas for triangles,” Int. J. Numer. Methods Eng. 7, 405-408 (1973). [CrossRef]
  29. I. Hänninen, M. Taskinen, and J. Sarvas, “Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions,” Prog. Electromagn. Res. PIER 63, 243-278 (2006). [CrossRef]
  30. R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle,” IEEE Trans. Antennas Propag. 41, 1448-1455 (1993). [CrossRef]
  31. P. Ylä-Oijala and M. Taskinen, “Calculation of CFIE impedance matrix elements with RWG and n×RWG functions,” IEEE Trans. Antennas Propag. 51, 1837-1846 (2003). [CrossRef]
  32. X. Q. Sheng, J. M. Jin, J. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718-1726 (1998). [CrossRef]
  33. P. Ylä-Oijala, “Application of a novel CFIE for electromagnetic scattering by dielectric objects,” Microwave Opt. Technol. Lett. 35, 3-5 (2002). [CrossRef]
  34. P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168-1173 (2005). [CrossRef]
  35. A. J. Poggio and E. K. Miller, “Integral equation solutions of three dimensional scattering problems,” in Computer Techniques for Electromagnetics (Permagon, 1973).
  36. Y. Chang and R. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789-795 (1977). [CrossRef]
  37. T.-K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709-718 (1977). [CrossRef]
  38. L. N. Medgyesi-Mitschang, J. M. Putnam, and M. B. Gedera, “Generalized method of moments for three-dimensional penetrable scatterers,” J. Opt. Soc. Am. A 11, 1383-1398 (1994). [CrossRef]
  39. C. Bohren and D. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  40. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909-3915 (1998). [CrossRef]
  41. J. Schöberl, “Netgen: an advancing front 2d/3d-mesh generator based on abstract rules,” Comput. Visualization Sci. 1, 41-52 (1997). [CrossRef]
  42. L. C. Davis, “Electostatic edge modes of a dielectric wedge,” Phys. Rev. B 14, 5523-5525 (1976). [CrossRef]
  43. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693-2703 (2008). [CrossRef]
  44. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144-9154 (2008). [CrossRef] [PubMed]
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited