OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 741–744

Evolution of singularities in a partially coherent vortex beam

Thomas van Dijk and Taco D. Visser  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 741-744 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000741


View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the evolution of phase singularities and coherence singularities in a Laguerre–Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity—a phase singularity—that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.

© 2009 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 10, 2008
Manuscript Accepted: January 28, 2009
Published: March 10, 2009

Citation
Thomas van Dijk and Taco D. Visser, "Evolution of singularities in a partially coherent vortex beam," J. Opt. Soc. Am. A 26, 741-744 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-4-741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye, Natural Focusing and Fine Structure of Light (IOP, 1999).
  2. M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, Vol. 42, E.Wolf, ed. (Elsevier, Amsterdam, 2001), pp. 219-275. [CrossRef]
  3. M. V. Berry and M. R. Dennis, “Polarization singularities in isotropic random vector waves,” Proc. R. Soc. London, Ser. A 457, 141-155 (2001). [CrossRef]
  4. I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, and I. I. Mokhun, “Stokes singularity relations,” Opt. Lett. 27, 545-547 (2002). [CrossRef]
  5. R. W. Schoonover and T. D. Visser, “Polarization singularities of focused, radially polarized fields,” Opt. Express 14, 5733-5745 (2006). [CrossRef] [PubMed]
  6. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence functions in Young's interference pattern,” Opt. Lett. 28, 968-970 (2003). [CrossRef] [PubMed]
  7. D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097-2102 (2004). [CrossRef]
  8. G. Gbur and T. D. Visser, “Phase singularities and coherence vortices in linear optical systems,” Opt. Commun. 259, 428-435 (2006). [CrossRef]
  9. T. D. Visser and R. W. Schoonover, “A cascade of singular field patterns in Young's interference experiment,” Opt. Commun. 281, 1-6 (2008). [CrossRef]
  10. J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” in Progress in Optics, Vol. 45, E.Wolf, ed. (North Holland, 2003), pp. 119-203. [CrossRef]
  11. Z. Wang, M. Dai, and J. Yin, “Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide,” Opt. Express 13, 8406-8423 (2005). [CrossRef] [PubMed]
  12. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997). [CrossRef]
  13. K. T. Gahagan and G. A. Swartzlander, Jr., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533-537 (1999). [CrossRef]
  14. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225-230 (2008). [CrossRef]
  15. S. A. Ponomarenko, “A class of partially coherent beams carrying optical vortices,” J. Opt. Soc. Am. A 18, 150-156 (2001). [CrossRef]
  16. G. V. Bogatyryova, C. V. Fel'de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28, 878-880 (2003). [CrossRef] [PubMed]
  17. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, Jr., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett. 92, 143905 (2004). [CrossRef] [PubMed]
  18. G. A. Swartzlander, Jr., and J. Schmit, “Temporal correlation vortices and topological dispersion,” Phys. Rev. Lett. 93, 093901 (2004). [CrossRef] [PubMed]
  19. I. D. Maleev and G. A. Swartzlander, Jr., “Propagation of spatial correlation vortices,” J. Opt. Soc. Am. B 25, 915-922 (2008). [CrossRef]
  20. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, 2005). [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley, New York, 2000). See Chap. 8.3.
  22. A. E. Siegman, Lasers (University Science Books, 1986).
  23. D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, and A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opt. 37, 5579-5589 (1998). [CrossRef]
  24. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambrige, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited