OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 783–793

Pseudopolar decomposition of the Jones and Mueller–Jones exponential polarization matrices

Oriol Arteaga and Adolf Canillas  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 783-793 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000783


View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new algorithm, the pseudopolar decomposition, to decompose a Jones or a Mueller–Jones matrix into a sequence of matrix factors: J J R J D J 1 C J 2 C or M M R M D M 1 C M 2 C . The matrices J R ( M R ) and J D ( M D ) parameterize, respectively, the retardation and dichroic properties of J ( M ) in a good approximation, while J i C ( M i C ) are correction factors that arise from the noncommutativity of the polarization properties. The exponential versions of the general Jones matrix are used to demonstrate the pseudopolar decomposition and to calculate each one of the matrix factors. The decomposition preserves all the polarization properties of the system on the factorized J R ( M R ) and J D ( M D ) matrix terms. The algorithm that calculates the pseudopolar decomposition for experimentally determined Mueller matrices is presented.

© 2009 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: July 18, 2008
Revised Manuscript: January 22, 2009
Manuscript Accepted: January 30, 2009
Published: March 17, 2009

Citation
Oriol Arteaga and Adolf Canillas, "Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices," J. Opt. Soc. Am. A 26, 783-793 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-4-783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766-773 (1994). [CrossRef]
  2. C. Whitney, “Pauli-algebraic operators in polarization optics,” J. Opt. Soc. Am. 61, 1207-1213 (1971). [CrossRef]
  3. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106-1113 (1996). [CrossRef]
  4. J. J. Gil and E. Bernabeu, “Obtainment of the polarizing and retardation parameters of nondepolarizing optical system from the polar decomposition of its Mueller matrix,” Optik (Jena) 76, 67-71 (1987).
  5. S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, “Conditions for polarization elements to be dichroic and birefringent,” J. Opt. Soc. Am. A 22, 1447-1452 (2005). [CrossRef]
  6. R. Ossikovski, “Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition,” J. Opt. Soc. Am. A 25, 473-482 (2008). [CrossRef]
  7. M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, and P. K. Gupta, “Polar decomposition of 3×3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14, 9324-9337 (2006). [CrossRef] [PubMed]
  8. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190-202 (2006). [CrossRef] [PubMed]
  9. C. Collet, J. Zallat, and Y. Takakura, “Clustering of Mueller matrix images for skeletonized structure detection,” Opt. Express 12, 1271-1280 (2004). [CrossRef] [PubMed]
  10. M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. Eur. Opt. Soc. Rapid Publ. 2, 07018 (2007). [CrossRef]
  11. J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038-3045 (2007). [CrossRef] [PubMed]
  12. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824-2832 (2004). [CrossRef] [PubMed]
  13. F. Le Roy-Bréhonnet, B. Le Jeune, P. Eliès, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34-38 (1996). [CrossRef]
  14. C. R. Jones, “New calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671-685 (1948). [CrossRef]
  15. S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006). [CrossRef]
  16. Z. El-Hachemi, O. Arteaga, A. Canillas, J. Crusats, C. Escudero, R. Kuroda, T. Harada, M. Rosa, and J. M. Ribó, “On the mechano-chiral effect of vortical flows on the dichroic spectra of 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphyrin j-aggregates,” Chem.-Eur. J. 14, 6438-6443 (2008). [CrossRef] [PubMed]
  17. O. Arteaga, Z. El-Hachemi, and A. Canillas, “Application of transmission ellipsometry to the determination of CD spectra of porphyrin J-aggregates,” Phys. Status Solidi A 205, 797-801 (2008). [CrossRef]
  18. R. Barakat, “Exponential versions of the Jones and Mueller-Jones polarization matrices,” J. Opt. Soc. Am. A 13, 158-163 (1996). [CrossRef]
  19. J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. (Washington, D.C.) 87, 1359-1399 (1987). [CrossRef]
  20. H. P. Jensen, J. A. Schellman, and T. Troxell, “Modulation techniques in polarization spectroscopy,” Appl. Spectrosc. 32, 192-200 (1978). [CrossRef]
  21. R. M. Wilcox, “Exponential operators and parameter differentiation in quantum physics,” J. Math. Phys. 8, 962-982 (1967). [CrossRef]
  22. D. Scholz and M. Weyrauch, “A note on the Zassenhaus product formula,” J. Math. Phys. 47, 033505 (2006). [CrossRef]
  23. M. Suzuki, “On the convergence of exponential operators--the Zassenhaus formula, BCH formula and systematic approximants,” Commun. Math. Phys. 57, 193-200 (1977). [CrossRef]
  24. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689-691 (2007). [CrossRef] [PubMed]
  25. R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A 205, 720-727 (2008). [CrossRef]
  26. G. E. Jellison, C. O. Griffiths, D. E. Holcomb, and C. M. Rouleau, “Transmission two-modulator generalized ellipsometry measurements,” Appl. Opt. 41, 6555-6566 (2002). [CrossRef] [PubMed]
  27. N. Ghosh, M. F. G. Wood, and A. I. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008). [CrossRef] [PubMed]
  28. N. Go, “Optical activity of anisotropic solutions. I,” J. Chem. Phys. 43, 1275-1280 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited