OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 882–889

Theoretical analysis for moiré deflectometry from diffraction theory

Yang Song, Yun Yun Chen, Anzhi He, and Zhimin Zhao  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 882-889 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000882


View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theories of moiré deflectometry are presented based on scalar diffraction theory. It is shown that the moiré effect is not a pure geometric phenomenon but actually the result of multishearing interference. By performing zeroth-order or first-order filtering, the field in the plane of observation is seen to be the result of double- or triple-shearing interference, respectively. With first-order filtering, the intensity distribution is proved to be a strict cosinusoidal intensity distribution, and the diffraction effect, which depends on the distance between two gratings, affects just the phase shift of the moiré fringes. Compared with previous research, a more precise relation between the unwrapped phase and the deflection angles is obtained. The results will be very useful for image processing of moiré patterns with Fourier transform profilometry and phase-shift methods.

© 2009 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(100.6950) Image processing : Tomographic image processing
(110.6960) Imaging systems : Tomography
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques

ToC Category:
X-ray Optics

History
Original Manuscript: August 12, 2008
Revised Manuscript: February 16, 2009
Manuscript Accepted: February 16, 2009
Published: March 19, 2009

Citation
Yang Song, Yun Yun Chen, Anzhi He, and Zhimin Zhao, "Theoretical analysis for moiré deflectometry from diffraction theory," J. Opt. Soc. Am. A 26, 882-889 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-4-882


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Posner and D. Dunn-Rankin, “Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms,” Appl. Opt. 42, 952-959 (2003). [CrossRef] [PubMed]
  2. X. Wan, S. Yu, G. Cai, Y. Gao, and J. Yi, “Three-dimensional plasma field reconstruction with multiobjective optimization emission spectral tomography,” J. Opt. Soc. Am. A 21, 1161-1171 (2004). [CrossRef]
  3. H. Thayyullathil, R. M. Vasu, and R. Kanhirodan, “Quantitative flow visualization in supersonic jets through tomographic inversion of wavefronts estimated through shadow casting,” Appl. Opt. 45, 5010-5019 (2006). [CrossRef] [PubMed]
  4. D. A. Feikema, “Quantitative rainbow schlieren deflectometry as a temperature diagnostic for nonsooting spherical flames,” Appl. Opt. 45, 4826-4832 (2006). [CrossRef] [PubMed]
  5. O. Kafri, “Noncoherent methods for mapping phase objects,” Opt. Lett. 5, 555-557 (1980). [CrossRef] [PubMed]
  6. O. Kafri and I. Glatt, “Moiré deflectometry: a ray deflection approach to optical testing,” Opt. Eng. (Bellingham) 24, 944-960 (1985).
  7. Y. Song, B. Zhang, and A. He, “Algebraic iterative algorithm for deflection tomography and its application to density flow fields in a hypersonic wind tunnel,” Appl. Opt. 45, 8092-8101 (2006). [CrossRef] [PubMed]
  8. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moiré deflectometry,” Appl. Opt. 20, 4263-4266 (1981). [CrossRef] [PubMed]
  9. A. K. Agrawal, N. K. Butuk, S. R. Gollahalli, and D. Griffin, “Three-dimensional rainbow schlieren tomography of a temperature field in gas flows,” Appl. Opt. 37, 479-485 (1998). [CrossRef]
  10. X. Xiao, I. K. Puri, and A. K. Agrawal, “Temperature measurements in steady axisymmetric partially premixed flames by use of rainbow schlieren deflectometry,” Appl. Opt. 41, 1922-1928 (2002). [CrossRef] [PubMed]
  11. E. Goldhahn and J. Seume, “The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field,” Exp. Fluids 43, 241-249 (2007). [CrossRef]
  12. M. Servin, R. Rodriguez-Vera, M. Carpio, and A. Morales, “Automatic fringe detection algorithm used for moiré deflectometry,” Appl. Opt. 29, 3266-3270 (1990). [CrossRef] [PubMed]
  13. H. Canabal, J. A. Quiroga, and E. Bernabeu, “Automatic processing in moiré deflectometry by local fringe direction calculation,” Appl. Opt. 37, 5894-5901 (1998). [CrossRef]
  14. J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moiré deflectograms,” Opt. Eng. (Bellingham) 38, 974-982 (1999). [CrossRef]
  15. M. Wang, “Fourier transform moiré tomography for high-sensitivity mapping asymmetric 3-D temperature field,” Opt. Laser Technol. 34, 679-685 (2002). [CrossRef]
  16. J. Zhong and M. Wang, “Fourier transform moiré deflectometry for the automatic measurement of phase objects,” Proc. SPIE 2899, 311-318 (1996). [CrossRef]
  17. S. Ranjbar, H. R. Khalesifard, and S. Rasouli, “Nondestructive measurement of refractive index profile of optical fiber preforms using moiré technique and phase shift method,” Proc. SPIE 6025, 602520 (2006). [CrossRef]
  18. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977-3982 (1983). [CrossRef] [PubMed]
  19. M. D. Pritt, “Weighted least squares phase unwrapping by means of multigrid techniques,” Proc. SPIE 2584, 278-288 (1995).
  20. J. A. Quiroga, A. González-Cano, and E. Bernabeu, “Phase-unwrapping algorithm based on adaptive criterion,” Appl. Opt. 34, 2560-2563 (1995). [CrossRef] [PubMed]
  21. E. Keren and O. Kafri, “Diffraction effects in moiré deflectometry,” J. Opt. Soc. Am. A 2, 111-120 (1985). [CrossRef]
  22. E. Bar-Ziv, “Effect of diffraction on the moiré image for temperature mapping in flames,” Appl. Opt. 23, 4040-4044 (1984). [CrossRef] [PubMed]
  23. E. Bar-Ziv, “Effect of diffraction on the moiré image I. Theory,” J. Opt. Soc. Am. A 2, 371-379 (1985). [CrossRef]
  24. E. Bar-Ziv, S. Sgulim, and D. Manor, “Effect of Diffraction on the moiré image. II. Experiment,” J. Opt. Soc. Am. A 2, 380-385 (1985). [CrossRef]
  25. A. Dahan, G. Ben-Dor, and E. Bar-Ziv, “Fourier transform deflection mapping,” Opt. Eng. (Bellingham) 32, 1094-1100 (1993). [CrossRef]
  26. D. W. Sweeny and C. M. Vest, “Reconstruction of three-dimensional refractive index field from multi-direction interferometric data,” Appl. Opt. 12, 2649-2664 (1973). [CrossRef]
  27. B. J. Pelliccia-Kraft and D. W. Watt, “Three-dimensional imaging of a turbulent jet using shearing interferometry and optical tomography,” Exp. Fluids 29, 573-581 (2000). [CrossRef]
  28. W. Merzkirch and Y. Egami, “Density-based techniques,” in Springer Handbook of Experimental Fluid Mechanics, C.Tropea, A.L.Yarin, and J. F. Foss, eds. (Springer, 2007), pp. 473-486
  29. G. W. Faris and R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202-5212 (1988). [CrossRef] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  31. D. E. Silva, “Talbot interferometer for radial and lateral derivatives,” Appl. Opt. 11, 2613-2624 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited