OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 4 — Apr. 1, 2009
  • pp: 977–984

Optical system invariant to second-order aberrations

Alexander B. Samokhin, Aleksey N. Simonov, and Michiel C. Rombach  »View Author Affiliations

JOSA A, Vol. 26, Issue 4, pp. 977-984 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approximate analytical expression is derived for the two-dimensional incoherent optical transfer function (OTF) of an imaging system invariant to second-order aberrations. The system broadband behavior resulting from a third-order phase mask in its pupil plane is analyzed by using the two-dimensional stationary phase method. This approach does not require mathematical separability of the pupil function and can be applied to any pupil shape. The OTF is found to be a well-defined and smooth function at all nonzero spatial frequencies when the phase mask function includes third-order mixed terms in the pupil coordinates.

© 2009 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(110.0110) Imaging systems : Imaging systems
(110.4850) Imaging systems : Optical transfer functions

ToC Category:
Imaging Systems

Original Manuscript: September 30, 2008
Manuscript Accepted: February 15, 2009
Published: March 25, 2009

Alexander B. Samokhin, Aleksey N. Simonov, and Michiel C. Rombach, "Optical system invariant to second-order aberrations," J. Opt. Soc. Am. A 26, 977-984 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859-1866 (1995). [CrossRef] [PubMed]
  2. J. van der Gracht, E. R. Dowski, Jr., M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919-921 (1996). [CrossRef] [PubMed]
  3. S. Bradburn, W. T. Cathey, and E. R. Dowski, “Realization of focus invariance in optical-digital systems with wave-front coding,” Appl. Opt. 36, 9157-9166 (1997). [CrossRef]
  4. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080-6092 (2002). [CrossRef] [PubMed]
  5. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709-2721 (2004). [CrossRef] [PubMed]
  6. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spheric aberrations,” Opt. Lett. 28, 771-773 (2003). [CrossRef] [PubMed]
  7. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004). [CrossRef]
  8. A. Castro and J. Ojeda-Castaneda, “Asymmetric phase masks for extended depth of field,” Appl. Opt. 43, 3474-3479 (2004). [CrossRef] [PubMed]
  9. S. Mezouari, G. Muyo, and A. R. Harvey, “Circularly symmetric phase filters for control of primary third-order aberrations: coma and astigmatism,” J. Opt. Soc. Am. A 23, 1058-1062 (2006). [CrossRef]
  10. H. Lei, H. Feng, X. Tao, and Zh. Xu, “Imaging characteristics of a wavefront coding system with off-axis aberrations,” Appl. Opt. 45, 7255-7263 (2006). [CrossRef] [PubMed]
  11. M. Somayaji and M. P. Christensen, “Frequency analysis of the wave-front coding odd-symmetric quadratic phase mask,” Appl. Opt. 46, 216-226 (2007). [CrossRef] [PubMed]
  12. M. Somayaji and M. P. Christensen, “Enhancing form factor and light collection of multiplex imaging systems by using a cubic phase mask,” Appl. Opt. 45, 2911-2923 (2006). [CrossRef] [PubMed]
  13. G. Muyo and A. R. Harvey, “Decomposition of the optical transfer function: wavefront coding imaging systems,” Opt. Lett. 30, 2715-2717 (2005). [CrossRef] [PubMed]
  14. S. Bagheri, P. E. X. Silveria, and D. P. Farias, “Analytical optimal solution of the extension of the depth of filed using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function,” J. Opt. Soc. Am. A 25, 1051-1063 (2008). [CrossRef]
  15. M. Fedoruk, Analysis I. Asymptotic Methods in Analysis, Vol. 13 of Encyclopaedia of Mathematical Science (Springer, 1989).
  16. M. V. Fedoruk, Saddle Point Method (Nauka, 1977) (in Russian).
  17. R. Wong, Asymptotic Approximations of Integrals (Academic, 1989).
  18. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91-103 (1955).
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  20. F. R. Gantmacher, The Theory of Matrices (Chelsea, 1959), Vol. 1.
  21. D. Kaminski, “Exponentially improved stationary phase approximations for double integrals,” Methods Appl. Anal. 1, 44-56 (1994).
  22. M. Frigo and S. G. Johnson, “FFTW,” http://www.fftw.org.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited