OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1167–1177

Chromatic perceptive field sizes measured at 10° eccentricity along the horizontal and vertical meridians

Vicki J. Volbrecht, Cynthia L. Clark, Janice L. Nerger, and Chrislyn E. Randell  »View Author Affiliations

JOSA A, Vol. 26, Issue 5, pp. 1167-1177 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The different hemifields in the retina are known to vary in photoreceptor density as well as in the number of photoreceptors converging onto one ganglion cell. The effect of these differences among the retinal hemifields at 10° retinal eccentricity was investigated using a color-naming procedure to derive perceptive field sizes for the hue terms of blue, green, yellow, and red. Color-naming data were obtained under two conditions: (1) after a bleach condition, chosen to minimize rod contribution, and (2) after 30 min dark adaptation, chosen to maximize rod contribution. Perceptive field sizes measured in the bleach condition were consistent with degree of neural convergence of cones to ganglion cells across the retina rather than differences in cone density. Rod densities relative to cone densities correlated with the size of perceptive fields in the no-bleach condition, i.e., the greater the rod:cone ratio, the larger the perceptive field.

© 2009 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: October 10, 2008
Revised Manuscript: February 3, 2009
Manuscript Accepted: March 14, 2009
Published: April 10, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Vicki J. Volbrecht, Cynthia L. Clark, Janice L. Nerger, and Chrislyn E. Randell, "Chromatic perceptive field sizes measured at 10° eccentricity along the horizontal and vertical meridians," J. Opt. Soc. Am. A 26, 1167-1177 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Gordon and I. Abramov, “Color vision in the peripheral retina. II. Hue and saturation,” J. Opt. Soc. Am. 67, 202-207 (1977). [CrossRef] [PubMed]
  2. M. A. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97-103 (1986). [PubMed]
  3. I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: Effects of stimulus size,” J. Opt. Soc. Am. A 8, 404-414 (1991). [CrossRef] [PubMed]
  4. A. L. Nagy and J. A. Doyal, “Red-green discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147-1156 (1993). [CrossRef] [PubMed]
  5. J. L. Nerger, V. J. Volbrecht, and C. J. Ayde, “Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity,” J. Opt. Soc. Am. A 12, 1225-1232 (1995). [CrossRef]
  6. N. R. Parry, D. J. McKeefry, and I. J. Murray, “Variant and invariant color perception in the near peripheral retina,” J. Opt. Soc. Am. A 23, 1586-1597 (2006). [CrossRef]
  7. V. D. Glezer, “The receptive fields of the retina,” Vision Res. 5, 497-525 (1965). [CrossRef] [PubMed]
  8. M. E. Wilson, “Invariant features of spatial summation with changing locus in the visual field,” J. Physiol. (London) 207, 611-622 (1970).
  9. F. Dannheim and S. M. Drance, “Studies of spatial summation of central retinal areas in normal people of all ages,” Can. J. Ophthalmol. 6, 311-319 (1971). [PubMed]
  10. T. Inui, O. Mimura, and K. Kani, “Retinal sensitivity and spatial summation in the foveal and parafoveal regions,” J. Opt. Soc. Am. 71, 151-154 (1981). [CrossRef] [PubMed]
  11. V. J. Volbrecht, E. E. Shrago, B. E. Schefrin, and J. S. Werner, “Spatial summation in human cone mechanisms from 0° to 20° in the superior retina,” J. Opt. Soc. Am. A 17, 641-650 (2000). [CrossRef]
  12. B. Stabell and U. Stabell, “Peripheral colour vision: Effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407-3414 (1996). [CrossRef] [PubMed]
  13. N. W. Daw, R. J. Jensen, and W. J. Brunken, “Rod pathways in mammalian retinae,” TINS 13, 110-115 (1990). [CrossRef] [PubMed]
  14. L. T. Sharpe and A. Stockman, “Rod pathways: the importance of seeing nothing,” TINS 22, 497-504 (1999). [CrossRef] [PubMed]
  15. S. A. Bloomfield and R. F. Dacheux, “Rod vision: Pathways and processing in the mammalian retina,” Prog. Retina Eye Res. 20, 351-384 (2001). [CrossRef]
  16. P. Gouras and K. Link, “Rod and cone interactions in dark-adapted monkey ganglion cells,” J. Physiol. (London) 184, 499-510 (1966).
  17. A. Ransom-Hogg and L. Spillmann, “Perceptive field size in fovea and periphery of the light- and dark-adapted retina,” Vision Res. 20, 221-228 (1980). [CrossRef] [PubMed]
  18. M. A. Pitts, L. J. Troup, V. J. Volbrecht, and J. L. Nerger, “Chromatic perceptive field sizes change with retinal illuminance,” J. Vision 5, 435-443 (2005). [CrossRef]
  19. L. J. Troup, M. A. Pitts, V. J. Volbrecht, and J. L. Nerger, “Effect of stimulus intensity on the sizes of chromatic perceptive fields,” J. Opt. Soc. Am. A 22, 2137-2142 (2005). [CrossRef]
  20. G. Westheimer, “Spatial interaction in the human retina during scotopic vision,” J. Physiol. (London) 181, 881-894 (1965).
  21. H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, “Change of organization in the receptive fields of the cat's retina during dark adaptation,” J. Physiol. (London) 137, 338-354 (1957).
  22. C. Enroth-Cugell, B. G. Hertz, and P. Lennie, “Convergence of rod and cone signals in the cat's retina,” J. Physiol. (London) 269, 297-318 (1977).
  23. R. L. DeValois and K. K. DeValois, “Neural coding of color,” in Handbook of Perception, Vol. 5, E.C.Carterette and M.P.Friedman, eds. (Academic, 1975), pp. 93-140.
  24. I. Abramov, J. Gordon, and H. Chan, “Color appearance across the retina: Effects of a white surround,” J. Opt. Soc. Am. A 9, 195-202 (1992). [CrossRef] [PubMed]
  25. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  26. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610-624 (1991). [CrossRef] [PubMed]
  27. C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300, 5-25 (1990). [CrossRef] [PubMed]
  28. D. J. Jameson and L. M. Hurvich, “Fixation-light bias: An unwanted by-product of fixation control,” Vision Res. 7, 805-809 (1967). [CrossRef] [PubMed]
  29. M. Alpern, “Rhodopsin kinetics in the human eye,” J. Physiol. (London) 217, 447-471 (1971).
  30. W. A. H. Rushton and D. S. Powell, “The rhodopsin content and the visual threshold of human rods,” Vision Res. 12, 1073-1081 (1972). [CrossRef] [PubMed]
  31. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669-682 (1966). [CrossRef] [PubMed]
  32. B. J. Winer, D. R. Brown, and K. M. Michels, Statistical Principles in Experimental Design (McGraw-Hill, 1991).
  33. J. Gordon and I. Abramov, “Describing color appearance: Hue and saturation scaling,” Percept. Psychophys. 56, 27-41 (1994). [CrossRef] [PubMed]
  34. J. M. Valeton and D. Van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539-1547 (1983). [CrossRef] [PubMed]
  35. R. Knight and S. L. Buck, “Rod influences on hue perception: Effect of background light level,” Color Res. Appl. 26, S60-S64 (2001). [CrossRef]
  36. S. L. Buck and R. Knight, “Stimulus duration affects rod influence on hue perception,” in Normal and Defective Colour Vision, J.D.Mollon, J.Pokorny, and K.Knoblauch, eds. (Oxford U. Press, 2003), pp. 179-186. [CrossRef]
  37. R. Knight and S. L. Buck, “Time-dependent changes of rod influence on hue perception,” Vision Res. 42, 1651-1662 (2002). [CrossRef] [PubMed]
  38. C. L. Angel, “The effect of rods on perceptive field size at 10° eccentricity in the four retinal quadrants,” doctoral dissertation (Colorado State University, 2002).
  39. E. P. Hornstein, P. Verweij, P. H. Li, and J. Schnapf, “Gap-junctional coupling and absolute sensitivity of photoreceptors in the macaque retina,” J. Neurosci. 25, 11201-11209 (2005). [CrossRef] [PubMed]
  40. V. Virsu and B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864-878 (1983). [PubMed]
  41. V. Virsu, B. B. Lee, and D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate nucleus cells,” Vision Res. 27, 191-200 (1987). [CrossRef] [PubMed]
  42. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. U.S.A. 85, 4534-4537 (1988). [CrossRef] [PubMed]
  43. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813-2828 (1997). [CrossRef]
  44. D. Cao, A. J. Zele, and J. Pokorny, “Dark adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral mechanisms,” Visual Neurosci. 23, 531-537 (2006). [CrossRef]
  45. D. Cao, A. J. Zele, and J. Pokorny, “Chromatic discrimination in the presence of incremental and decremental rod pedestals,” Visual Neurosci. 25, 399-404 (2008). [CrossRef]
  46. J. Gordon and I. Abramov, “Color vision,” in Blackwell Handbook of Perception, E.B.Goldstein, ed. (Blackwell Publishers, 2001), pp. 92-127.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited