OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 5 — May. 1, 2009
  • pp: 1268–1276

Modeling phase microscopy of transparent three-dimensional objects: a product-of-convolutions approach

Heidy Sierra, Charles A. DiMarzio, and Dana H. Brooks  »View Author Affiliations


JOSA A, Vol. 26, Issue 5, pp. 1268-1276 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001268


View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a product-of-convolutions (POC) model for phase microscopy images. The model was designed to simulate phase images of thick heterogeneous transparent objects. The POC approach attempts to capture phase delays along the optical axis by modeling the imaged object as a stack of parallel slices. The product of two-dimensional convolutions between each slice and the appropriate slice of the point spread function is used to represent the object at the image plane. The total electric field at the image plane is calculated as the product of the object function and the incident field. Phase images from forward models based on the first Born and Rytov approximations are used for comparison. Computer simulations and measured images illustrate the ability of the POC model to represent phase images from thick heterogeneous objects accurately, cases where the first Born and Rytov models have well-known limitations. Finally, measured phase microscopy images of mouse embryos are compared to those produced by the Born, Rytov, and POC models. Our comparisons show that the POC model is capable of producing accurate representations of these more complex phase images.

© 2009 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.0180) Microscopy : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: October 28, 2008
Revised Manuscript: March 15, 2009
Manuscript Accepted: March 22, 2009
Published: April 28, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Heidy Sierra, Charles A. DiMarzio, and Dana H. Brooks, "Modeling phase microscopy of transparent three-dimensional objects: a product-of-convolutions approach," J. Opt. Soc. Am. A 26, 1268-1276 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-5-1268


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Lang, “Nomarski differential interference contrast microscopy. II. formation of the interference image,” Zeiss Inform. 17, 12-16 (1969).
  2. H. Ishiwata, M. Itoh, and T. Yatagai, “A new method of three-dimensional measurement by differential interference contrast microscope,” Opt. Commun. 260, 117-126 (2006). [CrossRef]
  3. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  4. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836-1842 (2007). [CrossRef] [PubMed]
  5. D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, “Three-dimensional images generated by quadrature interferometry,” Opt. Lett. 23, 783-785 (1998). [CrossRef]
  6. E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194-203 (2002). [CrossRef] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). [CrossRef]
  8. S. R. P. Pavani, A. Libertun, S. King, and C. Cogswell, “Quantitative structured-illumination phase microscopy,” Appl. Opt. 47, 15-24 (2008). [CrossRef]
  9. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, 2001).
  10. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007). [CrossRef] [PubMed]
  11. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy,” Opt. Lett. 32, 1572-1574 (2007). [CrossRef] [PubMed]
  12. H. Gundlach, “Phase contrast and differential interference contrast instrumentation and application in cell, developmental, and marine biology,” Opt. Eng. 32, 3223-3228 (1993). [CrossRef]
  13. C. J. R. Sheppard and M. Gu, “Modeling of 3-D brightfield microscope systems,” Proc. SPIE 2302, 352-358 (1994). [CrossRef]
  14. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference contrast microscopy,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 2185-2199 (1999). [CrossRef] [PubMed]
  15. C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase-amplitude microscopy IV: imaging thick specimens,” J. Microsc. 214, 62-70 (2004). [CrossRef] [PubMed]
  16. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121-127 (1985). [CrossRef]
  17. I. Nemoto, “Three-dimensional imaging in microscopy as an extension of the theory of two-dimensional imaging,” J. Opt. Soc. Am. A 5, 1848-1851 (1988). [CrossRef]
  18. F. C. Lin and M. A. Fiddy, “The Born-Rytov controversy. I. comparing analytical and approximate expressions for the one-dimensional deterministic case,” J. Opt. Soc. Am. A 9, 1102-1110 (1992). [CrossRef]
  19. B. Chen and J. J. Stamnes, “Validity of diffraction tomography based on the first Born and the first Rytov approximations,” Appl. Opt. 37, 783-785 (1998). [CrossRef]
  20. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001). [CrossRef]
  21. C. J. Cogswell and C. J. R. Sheppard, “Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81-101 (1992). [CrossRef]
  22. F. Kagawala and T. Kanade, “Computational model of image formation process in DIC microscopy,” Proc. SPIE 3261, 193-204 (1998). [CrossRef]
  23. J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, “Computational microscopy in embryo imaging,” Opt. Lett. 29, 2267-2269 (2004). [CrossRef] [PubMed]
  24. D. L. Marks, “A family of approximations spanning the Born and Rytov scattering series,” Opt. Express 14, 8837-8848 (2006). [CrossRef] [PubMed]
  25. G. Beylkin and M. L. Oristaglio, “Distorted-wave Born and distorted-wave Rytov approximations,” Opt. Commun. 53, 213-216 (1985). [CrossRef]
  26. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173 (2008). [CrossRef] [PubMed]
  27. G. A. Tsihrintzis and A. J. Devaney, “Higher-order (nonlinear) diffraction tomography: reconstruction algorithms and computer simulation,” IEEE Trans. Image Process. 9, 1560-1572 (2000). [CrossRef]
  28. N. Dey, A. Boucher, and M. Thonnat, “Image formation model a 3 translucent object observed in light microscopy,” in Proceedings of 2002 Conference on Image Processing (IEEE, 2002), Vol. 2, pp. 469-472
  29. F. Truchetet and O. Laligant, “Optical tomography from focus,” Opt. Express 15, 7381-7392 (2007). [CrossRef] [PubMed]
  30. J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803-810 (1981). [CrossRef]
  31. D. Yevick and D. J. Thomson, “Complex Padé approximants for wide-angle acoustic propagators,” J. Acoust. Soc. Am. 108, 2784-2790 (2000). [CrossRef]
  32. K. Q. Le and P. Bienstman, “Wide-angle beam propagation method without using slowly varying envelope approximation,” J. Opt. Soc. Am. B 26, 353-356 (2009). [CrossRef]
  33. S. F. Gibson and F. Lanni, “Diffraction by a circular aperture as a model for three-dimensional optical microscopy,” J. Opt. Soc. Am. A 6, 1357-1367 (1989). [CrossRef] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 2001).
  35. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1999).
  36. H. Sierra, C. A. DiMarzio, and D. H. Brooks, “Modeling images of phase information for three-dimensional objects,” Proc. SPIE 6861, 68610A.1-68610A.9 (2008).
  37. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006). [CrossRef] [PubMed]
  38. F. A. Jenkins and H. White, Fundamentals of Optics (McGraw-Hill, 1976).
  39. W. C. Warger II, G. S. Laevsky, D. J. Townsend, M. Rajadhyaksha, and C. A. DiMarzio, “Multimodal optical microscope for detecting viability of mouse embryos in vitro,” J. Biomed. Opt. 12, 044006 (2007). [CrossRef] [PubMed]
  40. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  41. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited