OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1301–1306

Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates

Alejandro Cámara, Tatiana Alieva, José A. Rodrigo, and María L. Calvo  »View Author Affiliations

JOSA A, Vol. 26, Issue 6, pp. 1301-1306 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a simple approach for the phase space tomography reconstruction of the Wigner distribution of paraxial optical beams separable in Cartesian coordinates. It is based on the measurements of the antisymmetric fractional Fourier transform power spectra, which can be taken using a flexible optical setup consisting of four cylindrical lenses. The numerical simulations and the experimental results clearly demonstrate the feasibility of the proposed scheme.

© 2009 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: February 10, 2009
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 8, 2009
Published: May 7, 2009

Alejandro Cámara, Tatiana Alieva, José A. Rodrigo, and María L. Calvo, "Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates," J. Opt. Soc. Am. A 26, 1301-1306 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237-246 (1972).
  2. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27-29 (1978). [CrossRef] [PubMed]
  3. M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. 73, 1434-1441 (1983). [CrossRef]
  4. K. A. Nugent, “Wave field determination using 3-dimensional intensity information,” Phys. Rev. Lett. 68, 2261-2264 (1992). [CrossRef] [PubMed]
  5. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wavefield reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137-1140 (1994). [CrossRef] [PubMed]
  6. D. F. McAlister, M. Beck, L. Clarke, M. Mayer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transformation,” Opt. Lett. 20, 1181-1183 (1995). [CrossRef] [PubMed]
  7. Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842-844 (1996). [CrossRef] [PubMed]
  8. J. Tu and S. Tamura, “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 42, 1932-1937 (2003).
  9. D. Dragoman, “Redundancy of phase-space distribution functions in complex field recovery problems,” Appl. Opt. 42, 1932-1937 (2003). [CrossRef] [PubMed]
  10. T. Alieva, M. Bastiaans, and L. Stankovic, “Signal reconstruction from two close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112-123 (2003). [CrossRef]
  11. X. Liu and K. H. Brenner, “Reconstruction of two-dimensional complex amplitudes from intensity measurements,” Opt. Commun. 225, 19-30 (2003). [CrossRef]
  12. A. Semichaevsky and M. Testorf, “Phase-space interpretation of deterministic phase retrieval,” J. Opt. Soc. Am. A 21, 2173-2179 (2004). [CrossRef]
  13. C. Q. Tran, A. G. Peele, A. Roberts, K. A. Nugent, D. Paterson, and I. McNully, “X-ray imaging: a generalized approach using phase-space tomography,” J. Opt. Soc. Am. A 22, 1691-1699 (2005). [CrossRef]
  14. A. V. Gitin, “Optical systems for measuring the Wigner function of a laser beam by the method of phase-spacial tomography,” Quantum Electron. 37, 85-91 (2007). [CrossRef]
  15. U. Gopinathan, G. Situ, T. J. Naughton, and J. T. Sheridan, “Noninterferometric phase retrieval using a fractional Fourier system,” J. Opt. Soc. Am. A 25, 108-115 (2008). [CrossRef]
  16. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001).
  17. A. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181-2186 (1993). [CrossRef]
  18. S. Granieri, W. D. Furlan, G. Saavedra, and P. Andrés, “Radon-Wigner display: a compact optical implementation with a single varifocal lens,” Appl. Opt. 36, 8363-8369 (1997). [CrossRef]
  19. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23, 2494-2500 (2006). [CrossRef]
  20. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform,” J. Opt. Soc. Am. A 24, 3135-3139 (2007). [CrossRef]
  21. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227-1238 (1986). [CrossRef]
  22. J. C. Wood and D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals,” IEEE Trans. Signal Process. 42, 3166-3177 (1994). [CrossRef]
  23. S. R. Deans, “Radon and Abel transforms,” in The Transforms and Applications Handbook, A.D.Poularikas, ed. (CRC Press, 1999), pp. 8.1-8.95.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited