OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1335–1347

Image reconstruction in lens-based intensity diffraction tomography

Yin Huang and Mark A. Anastasio  »View Author Affiliations


JOSA A, Vol. 26, Issue 6, pp. 1335-1347 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001335


View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two image reconstruction methods for 3D lens-based intensity diffraction tomography (I-DT) are developed that account for the effects of a focusing lens placed between the object and the detector. One reconstruction method is a generalization of the original I-DT method and requires measurement of the transmitted wavefield intensity on two detector planes behind the object at each tomographic view angle. The second method employs a data-acquisition strategy in which the two intensity measurements are acquired, in turn, on a fixed detector plane, corresponding to distinct forms of lens aberration. Preliminary computer-simulation studies are conducted to demonstrate the numerical implementation of both methods and corroborate their mathematical correctness.

© 2009 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(290.3200) Scattering : Inverse scattering

ToC Category:
Imaging Systems

History
Original Manuscript: January 6, 2009
Manuscript Accepted: March 16, 2009
Published: May 13, 2009

Citation
Yin Huang and Mark A. Anastasio, "Image reconstruction in lens-based intensity diffraction tomography," J. Opt. Soc. Am. A 26, 1335-1347 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-6-1335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gbur and E. Wolf, “Diffraction tomography without phase information,” Opt. Lett. 27, 1890-1892 (2002). [CrossRef]
  2. G. Gbur and E. Wolf, “Hybrid diffraction tomography without phase information,” J. Opt. Soc. Am. A 19, 2194-2202 (2002). [CrossRef]
  3. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969). [CrossRef]
  4. E. Wolf, “Principles and development of diffraction tomography,” in Trends in Optics, A.Consortini, ed. (Academic, 1996), pp. 83-110. [CrossRef]
  5. A. J. Devaney, “Reconstructive tomography with diffracting wave fields,” Inverse Probl. 2, 161-183 (1986). [CrossRef]
  6. T. C. Wedberg and J. J. Stamnes, “Quantitative imaging by optical diffraction tomography,” Opt. Rev. 2, 28-31 (1995). [CrossRef]
  7. T. C. Wedberg and J. J. Stamnes, “Comparison of phase retrieval methods for optical diffraction tomography,” Pure Appl. Opt. 4, 39-54 (1995). [CrossRef]
  8. T. C. Wedberg and J. J. Stamnes, “Recent results in optical diffraction microtomography,” Meas. Sci. Technol. 7, 414-418 (1996). [CrossRef]
  9. M. Maleki and A. J. Devaney, “Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 10, 1086-1092 (1993). [CrossRef]
  10. P. Guo and A. J. Devaney, “Comparison of reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 22, 2338-2347 (2005). [CrossRef]
  11. M. H. Maleki and A. J. Devaney, “Noniterative reconstruction of complex-valued objects from two intensity measurements,” Opt. Eng. (Bellingham) 33, 3243-3253 (1994), http://link.aip.org/link/?JOE/33/3243/1. [CrossRef]
  12. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165-176 (2001). [CrossRef]
  13. A. J. Devaney and A. Schatzberg, “The coherent optical tomographic microscope,” Proc. SPIE 1767, 62-71 (1992). [CrossRef]
  14. F. Charrire, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006). [CrossRef]
  15. T. Beetz, C. Jacobsen, and A. Stein, “Soft x-ray diffraction tomography: simulations and first experimerimental results,” J. Phys. I 104, 31-34 (2003). [CrossRef]
  16. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329-336 (2000). [CrossRef]
  17. M. A. Anastasio and D. Shi, “On the relationship between intensity diffraction tomography and phase-contrast tomography,” in Proc. SPIE 5535, 361-368 (2004). [CrossRef]
  18. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289-2302 (2003). [CrossRef] [PubMed]
  19. P. McMahon, A. Peele, D. Paterson, K. A. Nugent, A. Snigirev, T. Weitkamp, and C. Rau, “X-ray tomographic imaging of the complex refractive index,” Appl. Phys. Lett. 83, 1480-1482 (2003). [CrossRef]
  20. G. Gbur, M. A. Anastasio, Y. Huang, and D. Shi, “Spherical-wave intensity diffraction tomography,” J. Opt. Soc. Am. A 22, 230-238 (2005). [CrossRef]
  21. M. A. Anastasio, D. Shi, Y. Huang, and G. Gbur, “Image reconstruction in spherical wave intensity diffraction tomography,” J. Opt. Soc. Am. A 22, 2651-2661 (2005). [CrossRef]
  22. D. Shi and M. A. Anastasio, “Off-axis holographic tomography for diffracting scalar wave fields,” Phys. Rev. E 73, 016612 (2006). [CrossRef]
  23. Y. Huang and M. A. Anastasio, “Statistically principled use of in-line measurements in intensity diffraction tomography,” J. Opt. Soc. Am. A 24, 626-642 (2007). [CrossRef]
  24. D. Shi and M. A. Anastasio, “Intensity diffraction tomography with fixed detector plane,” Opt. Eng. (Bellingham) 46, 107003 (2007). [CrossRef]
  25. M. A. Anastasio, D. Shi, and G. Gbur, “Multispectral intensity diffraction tomography reconstruction theory: quasi-nondispersive objects,” J. Opt. Soc. Am. A 23, 1359-1368 (2006). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  27. R. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomography and applications to ultrasonics,” Proc. IEEE 67, 567-587 (1979). [CrossRef]
  28. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336-350 (1982). [CrossRef] [PubMed]
  29. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  30. M. A. Anastasio and X. Pan, “Computationally efficient and statistically robust image rexonstruction in 3D diffraction tomography,” J. Opt. Soc. Am. A 17, 391-400 (2000). [CrossRef]
  31. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  32. L. J. Allen, M. P. Oxley, and D. Paganin, “Computational aberration correction for an arbitrary linear imaging system,” Phys. Rev. Lett. 87, 123902 (2001). [CrossRef] [PubMed]
  33. W. McBride, N. L. O'Leary, K. A. Nugent, and L. J. Allen, “Astigmatic electron diffraction imaging: a novel mode for structure determination,” Acta Crystallogr. 61, 321-324 (2005). [CrossRef]
  34. T. C. Peterson and V. J. Keast, “Astigmatic intensity equation for electron microscopy based phase retrival,” Ultramicroscopy 107, 635-643 (2007). [CrossRef]
  35. B. Chen and J. J. Stamnes, “Scattering by simple and nonsimple shapes by the combined method of ray tracing and diffraction: application to circular cylinders,” Appl. Opt. 37, 1999-2010 (1998). [CrossRef]
  36. O. R. Halse, J. J. Stamnes, and A. J. Devaney, “Three-dimensional diffraction tomography by two-dimensional sectioning,” Opt. Commun. 224, 185-195 (2003). [CrossRef]
  37. X. Pan, “A unified reconstruction theory for diffraction tomography with considerations of noise control,” J. Opt. Soc. Am. A 15, 2312-2326 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited