OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1348–1359

Estimating the polarization degree of polarimetric images in coherent illumination using maximum likelihood methods

Florent Chatelain, Jean-Yves Tourneret, Muriel Roche, and Mehdi Alouini  »View Author Affiliations


JOSA A, Vol. 26, Issue 6, pp. 1348-1359 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001348


View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the problem of estimating the polarization degree of polarimetric images in coherent illumination. It has been recently shown that the degree of polarization associated with polarimetric images can be estimated by the method of moments applied to two or four images assuming fully developed speckle. We show that the estimation can also be conducted by using maximum likelihood methods. The maximum likelihood estimators of the polarization degree are derived from the joint distribution of the image intensities. We show that the joint distribution of polarimetric images is a multivariate gamma distribution whose marginals are univariate, bivariate, or trivariate gamma distributions. This property is used to derive maximum likelihood estimators of the polarization degree using two, three, or four images. The proposed estimators provide better performance than the estimators of moments. These results are illustrated by estimations conducted on synthetic and real images.

© 2009 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: February 4, 2009
Manuscript Accepted: April 8, 2009
Published: May 13, 2009

Citation
Florent Chatelain, Jean-Yves Tourneret, Muriel Roche, and Mehdi Alouini, "Estimating the polarization degree of polarimetric images in coherent illumination using maximum likelihood methods," J. Opt. Soc. Am. A 26, 1348-1359 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-6-1348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  2. A. F. Sadjadi and C. S. L. Chun, “Automatic detection of small objects from their infrared state-of-polarization vectors,” Opt. Lett. 28, 531-533 (2003). [CrossRef] [PubMed]
  3. J. W. Williams, J. S. Tee, and M. A. Poulter, “Image processing and classification for the UK remote minefield detection system infrared polarimetric camera,” Proc. SPIE 4394, 139-152 (2001). [CrossRef]
  4. L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 1059-1071 (1990). [CrossRef]
  5. I. K. Miyazaki D. and M. Kagesawa, “Transparent surface modeling from a pair of polarization images,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 73-82 (2004). [CrossRef] [PubMed]
  6. C. F. Tongbo Chen, H. Lensch, and H.-P. Seidel, “Polarization and phase-shifting for 3d scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1-8. [CrossRef]
  7. T. Shibata, T. Takahashi, D. Miyazaki, Y. Sato, and K. Ikeuchi, “Creating photorealistic virtual model with polarization-based vision system,” Proc. SPIE 5888, 25-35 (2005).
  8. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453-5469 (2006). [CrossRef] [PubMed]
  9. E. S. Perlman, C. A. Padgett, M. Georganopoulos, W. B. Sparks, J. A. Biretta, C. P. O'Dea, S. A. Baum, M. Birkinshaw, D. M. Worrall, F. Dulwich, S. Jester, A. Martel, A. Capetti, and J. P. Leahy, “Optical polarimetry of the jets of nearby radio galaxies: I. the data,” Astrophys. J. 651, 735-748 (2006). [CrossRef]
  10. S. Umeyama and G. Godin, “Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 639-647 (2004). [CrossRef] [PubMed]
  11. P. C. Y. Chen, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, “Improving visibility depth in passive underwater imaging by use of polarization,” Appl. Opt. 42, 2794-2803 (2003). [CrossRef]
  12. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42, 511-525 (2003). [CrossRef] [PubMed]
  13. Y. Y. Schechner, J. Shamir, and N. Kiryati, “Polarization and statistical analysis of scenes containing a semireflector,” J. Opt. Soc. Am. A 17, 276-284 (2000). [CrossRef]
  14. K. Koshikawa, “A polarimetric approach to shape understanding of glossy objects,” in Proceedings of the 6th International Joint Conference on Artificial Intelligence, Tokyo, Japan, August 20-23, 1979, pp. 493-495.
  15. J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64-66 (1999). [CrossRef]
  16. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optical scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855-1870 (1996). [CrossRef] [PubMed]
  17. S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806 nm,” Opt. Eng. (Bellingham) 39, 2681-2688 (2000). [CrossRef]
  18. J. W. Goodman, Statistical Optics (Wiley, 1985).
  19. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329-340 (2002). [CrossRef] [PubMed]
  20. J. G. Walker, P. C. Y. Chang, and K. I. Hopcraft, “Visibility depth improvement in active polarization imaging in scattering media,” Appl. Opt. 39, 4933-4941 (2000). [CrossRef]
  21. S. Huard, Polarization of Light (Wiley, 1997).
  22. N. Kikuchi, “Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation,” J. Lightwave Technol. 19, 480-486 (2001). [CrossRef]
  23. A. Luis, “Degree of polarization in quantum optics,” Phys. Rev. A 66, 013806-1-013806-8 (2002). [CrossRef]
  24. O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233, 225-230 (2004). [CrossRef]
  25. D. Miyazaki, M. Saito, Y. Sato, and K. Ikeuchi, “Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths,” J. Opt. Soc. Am. A 19, 687-694 (2002). [CrossRef]
  26. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, Jr., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24, 1044-1046 (1999). [CrossRef]
  27. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439-442 (1996). [CrossRef]
  28. C. Brosseau, Fundamentals of Polarized Light--A Statistical Approach (Wiley, 1998).
  29. F. Goudail and P. Réfrégier, “Target segmentation in active polarimetric images by use of statistical active contours,” Appl. Opt. 41, 874-883 (2002). [CrossRef] [PubMed]
  30. F. Goudail and P. Réfrégier, Statistical Image Processing Techniques for Noisy Images: An Application Oriented Approach (Kluwer, 2004).
  31. M. Roche, J. Fade, and P. Réfrégier, “Parametric estimation of the square degree of polarization from two intensity images degraded by fully developed speckle noise,” J. Opt. Soc. Am. A 24, 2719-2727 (2007). [CrossRef]
  32. P. Réfrégier, J. Fade, and M. Roche, “Estimation precision of the degree of polarization from a single speckle intensity image,” Opt. Lett. 32, 739-741 (2007). [CrossRef] [PubMed]
  33. J. Fade, M. Roche, and P. Réfrégier, “Precision of moment-based estimation of the degree of polarization in coherent imagery without polarization device,” J. Opt. Soc. Am. A 25, 483-492 (2008). [CrossRef]
  34. P. Graczyk, G. Letac, and H. Massam, “The complex Wishart distribution and the symmetric group,” Ann. Stat. 31, 287-309 (2003). [CrossRef]
  35. P. Bernardoff, “Which multivariate gamma distributions are infinitely divisible?” Bernoulli 12, 169-189 (2006).
  36. F. Chatelain, J.-Y. Tourneret, A. Ferrari, and J. Inglada, “Bivariate gamma distributions for image registration and change detection,” IEEE Trans. Image Process. 16, 1796-1806 (2007). [CrossRef] [PubMed]
  37. P. Réfrégier, Noise Theory and Application to Physics: From Fluctuations to Information (Springer, 2004).
  38. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).
  39. G. Letac and J. Wesolowski, “Laplace transforms which are negative powers of quadratic polynomials,” Trans. Am. Math. Soc. 360, 6475-6496 (2008). [CrossRef]
  40. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  41. F. Chatelain, G. Letac, and J.-Y. Tourneret, “Estimating the correlation coefficient of bivariate gamma distributions using the maximum likelihood principle and the inference for margins,” Tech. rep., IRIT/ENSEEIHT/TéSA (2007).
  42. B. Porat and B. Friedlander, “Performance analysis of parameter estimation algorithms based on high-order moments,” Int. J. Adapt. Control Signal Process. 3, 191-229 (1989). [CrossRef]
  43. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 2 (Griffin, 1961).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited