OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1360–1365

Quantum number theoretic transforms on multipartite finite systems

A. Vourdas and S. Zhang  »View Author Affiliations

JOSA A, Vol. 26, Issue 6, pp. 1360-1365 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (124 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantum system composed of p 1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg–Weyl group in this context is also discussed.

© 2009 Optical Society of America

OCIS Codes
(070.2465) Fourier optics and signal processing : Finite analogs of Fourier transforms
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 4, 2009
Manuscript Accepted: April 17, 2009
Published: May 13, 2009

A. Vourdas and S. Zhang, "Quantum number theoretic transforms on multipartite finite systems," J. Opt. Soc. Am. A 26, 1360-1365 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Pollard, “The FFT in a finite field,” Math. Comput. 25, 365-374 (1971). [CrossRef]
  2. J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing (Prentice Hall, 1979).
  3. R. E. Blahut, Fast Algorithms for Digital Signal Processing (Addison Wesley, 1985).
  4. D. F. Elliott and K. R. Rao, Fast Transforms (Academic, 1982).
  5. A. Vourdas, “Quantum systems with finite Hilbert space,” Rep. Prog. Phys. 67, 267-320 (2004). [CrossRef]
  6. A. Vourdas, “Quantum systems with finite Hilbert space: Galois fields in quantum mechanics,” J. Phys. A 40, R285-R331 (2007). [CrossRef]
  7. M. J. Holland and K. Burnett, “Interferometric detection of optical-phase shifts at the Heisenberg limit,” Phys. Rev. Lett. 71, 1355-1358 (1993). [CrossRef] [PubMed]
  8. T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, “Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons,” Phys. Rev. A 57, 4004-4013 (1998). [CrossRef]
  9. J. A. Dunningham, K. Burnett, and S. M. Barnett, “Interferometry below the standard quantum limit with Bose-Einstein condensates,” Phys. Rev. Lett. 89, 150401 (2002). [CrossRef] [PubMed]
  10. D. C. Roberts and K. Burnett, “Probing states in the Mott insulator regime in the case of coherent bosons trapped in an optical lattice,” Phys. Rev. Lett. 90, 150401 (2003). [CrossRef] [PubMed]
  11. J. A. Dunningham, K. Burnett, and W. D. Phillips, “Bose-Einstein condensates and precision measurements,” Philos. Trans. R. Soc. London, Ser. A 363, 2165-2175 (2005). [CrossRef]
  12. M. Hillery, M. Zou, and V. Buzek, “Difference-phase squeezing from amplitude squeezing by means of a beamsplitter,” Quantum Semiclassic. Opt. 8, 1041-1051 (1996). [CrossRef]
  13. M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002). [CrossRef]
  14. J. H. Shapiro, S. R. Shepard, and N. C. Wong, “Ultimate quantum limits on phase measurement,” Phys. Rev. Lett. 62, 2377-2380 (1989). [CrossRef] [PubMed]
  15. W. P. Schleich, J. P. Dowling, and R. J. Horowicz, “Exponential decrease in phase uncertainty,” Phys. Rev. A 44, 3365-3368 (1991). [CrossRef] [PubMed]
  16. A. S. Lane, S. L. Braunstein, and C. M. Caves, “Maximum-likelihood statistics of multiple quantum phase measurements,” Phys. Rev. A 47, 1667-1696 (1993). [CrossRef] [PubMed]
  17. J. P. Dowling, “Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope,” Phys. Rev. A 57, 4736-4746 (1998). [CrossRef]
  18. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58-61 (1994). [CrossRef] [PubMed]
  19. P. Torma, S. Stenholm, and I. Jex, “Hamiltonian theory of symmetric optical network transforms,” Phys. Rev. A 52, 4853-4860 (1995). [CrossRef] [PubMed]
  20. I. Jex, S. Stenholm, and A. Zeilinger, “Hamiltonian theory of a symmetric multiport,” Opt. Commun. 117, 95-101 (1995). [CrossRef]
  21. A. Vourdas and J. A. Dunningham, “Fourier multiport devices,” Phys. Rev. A 71, 013809 (2005). [CrossRef]
  22. J. Dunningham and A. Vourdas, “Efficient comparison of path-lengths using Fourier multiport devices,” J. Phys. B 39, 1579-1586 (2006). [CrossRef]
  23. S. Zhang, C. Lei, A. Vourdas, and J. Dunningham, “Applications and implementation of Fourier multiport devices,” J. Phys. B 39, 1625-1637 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited