OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1382–1392

Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays

Stafford Withington and Christopher N. Thomas  »View Author Affiliations


JOSA A, Vol. 26, Issue 6, pp. 1382-1392 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001382


View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Free-space power detectors often have energy absorbing structures comprising multilayer systems of patterned thin films. We show that for any system of interacting resistive films, the expectation value of the absorbed power is given by the contraction of two tensor fields: one describes the spatial state of coherence of the incoming radiation, the other the state of coherence to which the detector is sensitive. Equivalently, the natural modes of the optical field scatter power into the natural modes of the detector. We describe a procedure for determining the amplitude, phase, and polarization patterns of a detector’s optical modes and their relative responsivities. The procedure gives the state of coherence of the currents flowing in the system and leads to important conceptual insights into the way the pixels of an imaging array interact and extract information from an optical field.

© 2009 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(040.0040) Detectors : Detectors
(110.0110) Imaging systems : Imaging systems
(230.0230) Optical devices : Optical devices
(310.0310) Thin films : Thin films

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 29, 2009
Manuscript Accepted: April 8, 2009
Published: May 18, 2009

Citation
Stafford Withington and Christopher N. Thomas, "Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays," J. Opt. Soc. Am. A 26, 1382-1392 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-6-1382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. D. Irwin and G. C. Hilton, “Cryogenic particle detection,” Top. Appl. Phys. 99, 63-149, 2005.
  2. Millimeter and Submillimeter Detectors for Astronomy IV, W.M.Duncan, S.Holland, S.Withington, and J.Zmuidzinas, eds, Vol. 7020 (SPIE, 2008).
  3. Millimeter and Submillimeter Detectors for Astronomy III, W.M.Duncan, S.Holland, S.Withington, and J.Zmuidzinas, eds., Vol. 6275 (SPIE, 2006).
  4. D. T. Chuss, E. J. Wollack, S. H. Moseley, S. Withington, and G. Saklatvala, “Diffraction considerations for planar detectors in the few-mode limit,” Publ. Astron. Soc. Pac. 120, 430-438 (2008). [CrossRef]
  5. S. Withington, C. Y. Tham, and G. Yassin, “Theoretical analysis of planar bolometric arrays for THz imaging systems,” Proc. SPIE 4855, 49-62 (2003). [CrossRef]
  6. C. N. Thomas and S. Withington, “A new experimental procedure for determining the response of bolometric detectors to fields in any state of spatial coherence,” Proc. SPIE 7020, 1Z1-1Z12 (2008).
  7. S. Doyle, J. Naylon, P. D. Mauskopf, A. Porch, S. Withington, D. Goldie, D. Glowacka, J. J. A. Baselmans, S. J. C. Yates, H. F. C. Hoevers, “Lumped kinetic inductance detectors for far infrared astronomy,” Proc. SPIE 7020, 0T1-0T10 (2008).
  8. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature (London) 425, 817-821 (2003). [CrossRef]
  9. R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley, 1989).
  10. T. B. A. Senior, “Backscattering from resistive strips,” IEEE Trans. Antennas Propag. 27, 808-813 (1979). [CrossRef]
  11. R. C. Hall, R. Mittra, and K. M. Mitzner, “Scattering from finite thickness resistive strip gratings,” IEEE Trans. Antennas Propag. 36, 504-510 (1988). [CrossRef]
  12. W. P. Harokopus and L. P. B. Katehi, “Electromagnetic coupling and radiation loss considerations in microstrip MMIC design,” IEEE Trans. Microwave Theory Tech. 39, 413-421 (1991). [CrossRef]
  13. T. S. Horng, W. E. McKinzie, and N. G. Alexopoulos, “Full-wave spectral-domain analysis of compensation of microstrip discontinuities using triangular subdomain functions,” IEEE Trans. Microwave Theory Tech. 40, 2137-2145 (1992). [CrossRef]
  14. F. Tavakkol-Hamedani, A. Tavakoli, and L. Shafai, “Analysis of finite-microstrip structures using surface equivalence principle and multiple network theory (SEMN),” IEEE Trans. Antennas Propag. 50, 1128-1137 (2002). [CrossRef]
  15. S. Withington, G. Saklatvala, and M. P. Hobson, “Theoretical analysis of astronomical phased arrays,” J. Opt. A, Pure Appl. Opt. 10, 015304(10 pp) (2008). [CrossRef]
  16. G. Saklatvala, S. Withington, and M. P. Hobson, “Simulations of astronomical imaging phased arrays,” J. Opt. Soc. Am. A 25, 958-967 (2008). [CrossRef]
  17. S. Withington, M. P. Hobson, and E. S. Campbell, “Modal foundations of close-packed optical arrays with particular application to infrared and millimeter-wave astronomy,” J. Appl. Phys. 96, 1794-1802 (2004). [CrossRef]
  18. G. Saklatvala, S. Withington, and M. P. Hobson, “Coupled mode theory for infrared and submillimeter wave detectors,” J. Opt. Soc. Am. A 24, 764-775 (2007). [CrossRef]
  19. S. Withington and G. Saklatvala, “Characterizing the behaviour of partially coherent detectors through spatio-temporal modes,” J. Opt. A, Pure Appl. Opt. 9, 626-633 (2007). [CrossRef]
  20. D. A. B. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681-1699 (2000). [CrossRef]
  21. M. D. Migliore, “On electromagnetics and information theory,” IEEE Trans. Antennas Propag. 56, 3188-3200 (2008). [CrossRef]
  22. T. Itoh and R. Mittra, “Spectral-domain approach for calculating the dispersion characteristics of microstrip lines,” IEEE Trans. Microwave Theory Tech. 21, 496-499 (1973). [CrossRef]
  23. P. G. Casazza, “The art of frame theory,” Taiwan. J. Math. 4, 129-201 (2002).
  24. S. Withington, M. P. Hobson, and R. H. Berry, “Representing the behavior of partially coherent optical systems by using overcomplete basis sets,” J. Opt. Soc. Am. A 21, 207-217 (2004). [CrossRef]
  25. R. H. Berry, M. P. Hobson, and S. Withington, “General approach for representing and propagating partially coherent terahertz fields with application to Gabor basis sets,” J. Opt. Soc. Am. A 21, 786-796 (2004). [CrossRef]
  26. J. D. Kraus, Radio Astronomy (McGraw-Hill, 1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited