OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1424–1436

Evolutionary models of color categorization. II. Realistic observer models and population heterogeneity

Kimberly A. Jameson and Natalia L. Komarova  »View Author Affiliations

JOSA A, Vol. 26, Issue 6, pp. 1424-1436 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The evolution of color categorization is investigated using computer simulations of agent population categorization games. Various realistic observer types are implemented based on Farnsworth–Munsell 100 Hue Test human performance data from normal and anomalous trichromats, dichromats, and humans with four retinal photopigments. Results show that (i) a small percentage of realistically modeled deficient agents greatly affects the shared categorization solutions of the entire population in terms of color category boundary locations; (ii) for realistically modeled populations, dichromats have the strongest influence on the color categorization; their characteristic forms of color confusion affect (i.e., attract or repel) color boundary locations and accord with our findings for homogeneous dichromat populations [ J. Opt. Soc. Am. A 26, 1414–1423 (2009) ]; (iii) adding anomalous trichromats or trichromat “experts” does not destabilize the solutions or substantially alter solution structure. The results provide insights regarding the mechanisms that may constrain universal tendencies in human color categorization systems.

© 2009 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5020) Vision, color, and visual optics : Perception psychology

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: April 10, 2009
Manuscript Accepted: April 10, 2009
Published: May 22, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Kimberly A. Jameson and Natalia L. Komarova, "Evolutionary models of color categorization. II. Realistic observer models and population heterogeneity," J. Opt. Soc. Am. A 26, 1424-1436 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Uchikawa and R. M. Boynton, “Categorical color perception of Japanese observers: comparison with that of Americans,” Vision Res. 27, 1825-1833 (1987). [CrossRef] [PubMed]
  2. M. A. Webster, S. M. Webster, S. Bharadwadj, R. Verma, J. Jaikumar, J. Madan, and E. Vaithilingam, “Variations in normal color vision: III. Unique hues in Indian and U.S. observers,” J. Opt. Soc. Am. A 19, 1957-1962 (2002). [CrossRef]
  3. P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. U.S.A. 100, 9085-9089 (2003). [CrossRef] [PubMed]
  4. T. Regier, P. Kay, and R. S. Cook, “Focal colors are universal after all,” Proc. Natl. Acad. Sci. U.S.A. 102, 8386-8391 (2005). [CrossRef] [PubMed]
  5. B. Sayim, K. A. Jameson, N. Alvarado, and M. K. Szeszel, “Semantic and perceptual representations of color: evidence of a shared color-naming function,” J. Cogn. Culture 5, 427-486 (2005). [CrossRef]
  6. M. A. Webster and P. Kay, “Individual and population differences in focal colors,” in Anthropology of Color: Interdisciplinary Multilevel Modeling, R.E.MacLaury, G.V.Paramei, and D.Dedrick, eds. (Benjamins, 2007), pp. 29-53.
  7. C.L.Hardin and L.Maffi, eds., Color Categories in Thought and Language (Cambridge U. Press, 1997). [CrossRef]
  8. C. C. Moore, A. K. Romney, and T. Hsia, “Shared cognitive representations of perceptual and semantic structures of basic colors in Chinese and English,” Proc. Natl. Acad. Sci. U.S.A. 97, 5007-5010 (1997). [CrossRef]
  9. J. Davidoff, I. Davies, and D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203-204 (1999). [CrossRef] [PubMed]
  10. D. Roberson, I. R. L. Davies, and J. Davidoff, “Color categories are not universal: Replications and new evidence from a stone-age culture,” J. Exp. Psychol. Gen. 129, 369-398 (2000). [CrossRef] [PubMed]
  11. K. A. Jameson and N. Alvarado, “Differences in color naming and color salience in Vietnamese and English,” Color Res. Appl. 28, 113-138 (2003). [CrossRef]
  12. D. Roberson, J. Davidoff, I. R. L. Davies, and L. R. Shapiro, “The development of color categories in two languages: a longitudinal study,” J. Exp. Psychol. 133, 554-571 (2004).
  13. D. Roberson and J. R. Hanley, “Color vision: Color categories vary with language after all,” Curr. Biol. 17, R605-R607 (2007). [CrossRef] [PubMed]
  14. T. Belpaeme and J. Bleys, “Explaining universal color categories through a constrained acquisition process,” Adapt. Behav. 13, 293-310 (2005). [CrossRef]
  15. L. Steels and T. Belpaeme, “Coordinating perceptually grounded categories: A case study for colour,” Behav. Brain Sci. 28, 469-529 (2005). [CrossRef] [PubMed]
  16. L. D. Griffin, “The basic colour categories are optimal for classification,” J. R. Soc., Interface 3, 71-85 (2006). [CrossRef]
  17. Delwin T. Lindsey and Angela M. Brown, “Universality of color names,” Proc. Natl. Acad. Sci. U.S.A. 103, 16608-16613 (2006). [CrossRef] [PubMed]
  18. T. Regier, P. Kay, and N. Khetarpal, “Color naming reflects optimal partitions of color space,” Proc. Natl. Acad. Sci. U.S.A. 104, 1436-1441 (2007). [CrossRef] [PubMed]
  19. M. Dowman, “Explaining color term typology with an evolutionary model,” Cogn. Sci. 31, 99-132 (2007). [CrossRef] [PubMed]
  20. A. Puglisi, A. Baronchelli, and V. Loreto, “Cultural route to the emergence of linguistic categories,” Proc. Natl. Acad. Sci. U.S.A. 105, 7936-7940 (2008). [CrossRef] [PubMed]
  21. N. L. Komarova, K. A. Jameson, and L. Narens, “Evolutionary models of color categorization based on discrimination,” J. Math. Psychol. 51, 359-382 (2007). [CrossRef]
  22. N. L. Komarova and K. A. Jameson, “Population heterogeneity and color stimulus heterogeneity in agent-based color categorization,” J. Theor. Biol. 253, 680-700 (2008). [CrossRef] [PubMed]
  23. K. A. Jameson and N. L. Komarova, “Evolutionary models of color categorization. I. Population categorization systems based on normal and dichromat observers,” J. Opt. Soc. Am. A 26, 1414-1423 (2009). [CrossRef]
  24. D. Farnsworth, The Farnsworth-Munsell 100 Hue Test for the Examination of Color Vision (Munsell Color Company, 1949/1957).
  25. K. Mantere, J. Parkkinen, M. Mäntyjärvi, and T. Jaaskelainen, “Eigenvector interpretation of the Farnsworth-Munsell 100-hue test,” J. Opt. Soc. Am. A 12, 2237-2243 (1995). [CrossRef]
  26. J. Birch, Diagnosis of Defective Colour Vision, 2nd ed. (Butterworth-Heinemann, 2001).
  27. J. H. Nelson, “Anomalous trichromatism and its relation to normal trichromatism,” Proc. Physiol. Soc. 50, 661-702 (1938). [CrossRef]
  28. J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).
  29. G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  30. L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K.R.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 3-51.
  31. D. Bimler, J. Kirkland, and R. Jacobs,“Colour-vision tests considered as a special case of multidimensional scaling,” Color Res. Appl. 25, 160-169 (2000). [CrossRef]
  32. K. A. Jameson, S. M. Highnote, and L. M. Wasserman, “Richer color experience in observers with multiple photopigment opsin genes,” Psychon. Bull. Rev. 8, 244-261 (2001). [CrossRef] [PubMed]
  33. K. A. Jameson, D. Bimler, and L. M. Wasserman, “Re-assessing perceptual diagnostics for observers with diverse retinal photopigment genotypes,” in Progress in Colour Studies 2: Cognition, N.J.Pitchford and C.P.Biggam, eds. (Benjamins, 2006), pp. 13-33.
  34. Farnsworth-Munsell Scaling Software, Version 2.1 (MacBeth Division of Kolmorgen Corporation, 1997).
  35. D. Farnsworth, “The Farnsworth-Munsell 100-Hue and Dichotomous Tests for color vision,” J. Opt. Soc. Am. 33, 568-578 (1943). [CrossRef]
  36. S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 87, 276-293 (2004). [CrossRef] [PubMed]
  37. G. V. Paramei, D. Bimler, and N. O. Mislavskaia, “Colour perception in twins: Individual variation beyond common genetic inheritance,” Clin. Exp. Optom. 87, 305-312 (2004). [CrossRef] [PubMed]
  38. G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397-3401 (1998). [CrossRef]
  39. J. Pokorny and V. C. Smith, “Evaluation of single-pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196-1209 (1977). [CrossRef] [PubMed]
  40. J. Nathans, D. Thomas, and D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science 232, 193-202 (1986). [CrossRef] [PubMed]
  41. J. Nathans, T. P. Piantanida, R. L. Eddy, T. B. Shows, and D. S. Hogness, “Molecular genetics of inherited variation in human color vision,” Science 232, 203-210 (1986). [CrossRef] [PubMed]
  42. A. B. Asenjo, J. Rim, and D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131-1138 (1994). [CrossRef] [PubMed]
  43. S. Yokoyama and F. B. Radlwimmer, “The 'Five-Sites' Rule and the evolution of red and green color vision in mammals,” Mol. Biol. Evol. 15, 560-567 (1998). [PubMed]
  44. G. Jordan and J. D. Mollon, “A study of women hererozygous for colour deficiencies,” Vision Res. 33, 1495-1508 (1993). [CrossRef] [PubMed]
  45. D. Bimler and J. Kirkland, “Colour-space distortion in women who are heterozygous for colour deficiency,” Vision Res. 49, 536-543 (2009). [CrossRef] [PubMed]
  46. S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vision Res. 46, 2894-2900 (2006). [CrossRef] [PubMed]
  47. J. Birch, “Extreme anomalous trichromatism,” in Normal and Defective Colour Vision, J.D.Mollon, J.Pokorny, and K.Knoblauch, eds. (Oxford U. Press, 2003), pp. 364-369. [CrossRef]
  48. Subjects 27, 52, 58, 61, and 85 reported in [33]: ages 18-21 years, with above average chromatic banding behaviors [μ(medianbands)=10 versus 7.9 for controls].
  49. K. Jameson and R. G. D'Andrade, “It's not really red, green, yellow, blue: An inquiry into cognitive color space,” in Color Categories in Thought and Language, C.L.Hardin and L.Maffi, eds. (Cambridge U. Press, 1997), pp. 295-319. [CrossRef]
  50. K. A. Jameson, “Culture and cognition: What is universal about the representation of color experience?” J. Cogn. Culture 5, 293-347 (2005). [CrossRef]
  51. T. Regier, P. Kay, and N. Khetarpal, “Color naming reflects optimal partitions of color space,” Proc. Natl. Acad. Sci. U.S.A. 104, 1436-1441 (2007). [CrossRef] [PubMed]
  52. K. A. Jameson, “Sharing perceptually grounded categories in uniform and nonuniform populations,” Behav. Brain Sci. 28, 501-502 (2005). [CrossRef]
  53. Fewer confusion pairs make minimization more likely.
  54. J. Birch, “Use of the Farnsworth-Munsell 100-hue test in the examination of congenital colour vision defects,” Ophthalmol. Physiol. Opt. 9, 156-162 (1989). [CrossRef]
  55. G. V. Paramei, “Color space of normally sighted and color-deficient observers reconstructed from color naming,” Psychol. Sci. 7, 311-317 (1996). [CrossRef]
  56. With axes corresponding to the second and third vectors of the Eigen solution, namely, a Y−B axis and a R−G+B axis, respectively.
  57. A. K. Romney, “Relating reflectance spectra space to Munsell color appearance space,” J. Opt. Soc. Am. A 25, 658-666 (2008). [CrossRef]
  58. D. Bimler, J. Kirkland, and K. A. Jameson, “Quantifying variations in personal color spaces: Are there sex differences in color vision?” Color Res. Appl. 29, 128-134 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited