OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 6 — Jun. 1, 2009
  • pp: 1458–1466

Closed-form representations of field components of fluorescent emitters in layered media

Mehmet Dogan, M. Irsadi Aksun, Anna K. Swan, Bennett B. Goldberg, and M. Selim Ünlü  »View Author Affiliations


JOSA A, Vol. 26, Issue 6, pp. 1458-1466 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001458


View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dipole radiation in and near planar stratified dielectric media is studied theoretically within the context of fluorescence microscopy, as fluorescent emitters are generally modeled by electric dipoles. Although the main emphasis of this study is placed on the closed-form representations of the field components of fluorescent emitters in layered environments in near- and far-field regions, the underlying motive is to understand the limits of spectral self-interference fluorescence microscopy in studying the dipole orientation of fluorophores. Since accurate calculations of the field components of arbitrarily polarized electric dipoles in layered environments are computationally very time-consuming, a method for finding their closed-form representations is proposed using the closed-form potential Green’s functions previously developed for microwave applications. The method is verified on typical geometries used in spectral self-interference microscopy experiments, where a dipole emitter is positioned over a slab of Si O 2 on top of a Si substrate. In addition to facilitating efficient calculation of near and intermediate fields of fluorescent emitters, closed-form Green’s functions for fields would also play a crucial role in developing efficient and rigorous computational analysis and design tools for optical passive devices such as optical antennas by significantly improving the computational cost of the numerical solution of the integral equation.

© 2009 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.2510) Physical optics : Fluorescence
(260.3160) Physical optics : Interference
(350.5500) Other areas of optics : Propagation
(350.5610) Other areas of optics : Radiation

ToC Category:
Physical Optics

History
Original Manuscript: October 21, 2008
Revised Manuscript: April 11, 2009
Manuscript Accepted: April 13, 2009
Published: May 27, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Mehmet Dogan, M. Irsadi Aksun, Anna K. Swan, Bennett B. Goldberg, and M. Selim Ünlü, "Closed-form representations of field components of fluorescent emitters in layered media," J. Opt. Soc. Am. A 26, 1458-1466 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-6-1458


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Wiener, “Stehende Lichtwellen und die Schwingungrichtung polarisirten Lichtes,” Ann. Phys. Chem. 40, 203-243 (1890). [CrossRef]
  2. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163-232 (1974). [CrossRef]
  3. A. Lambacher and P. Fromherz, “Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer,” Appl. Phys. A: Mater. Sci. Process. 63, 207-216 (1996). [CrossRef]
  4. D. Braun and P. Fromherz, “Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon,” Appl. Phys. A: Mater. Sci. Process. 65, 341-348 (1997). [CrossRef]
  5. D. Braun and P. Fromherz, “Fluorescence interferometry of neuronal cell adhesion on microstructured silicon,” Phys. Rev. Lett. 81, 5241-5244 (1998). [CrossRef]
  6. J. M. Crane, V. Kiessling, and L. K. Tamm, “Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy,” Langmuir 21, 1377-1388 (2005). [CrossRef] [PubMed]
  7. J. Kerssemakers, J. Howard, H. Hess, and S. Diez, “The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103, 15812-15817 (2006). [CrossRef] [PubMed]
  8. A. K. Swan, L. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Ünlü, “Towards nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294-300 (2003). [CrossRef]
  9. L. Moiseev, M. S. Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623-2628 (2006). [CrossRef] [PubMed]
  10. B. Davis, A. K. Swan, M. S. Ünlü, W. C. Karl, B. B. Goldberg, J. C. Schotland, and P. S. Carney, “Spectral self-interference microscopy for low signal nanoscale imaging,” J. Opt. Soc. Am. A 24, 3587-3599 (2007). [CrossRef]
  11. R. E. Colin, “Hertzian dipole radiating over a lossy earth or sea: Some early and late 20th-century controversies,” IEEE Antennas Propag. Mag. 46, 64-79 (2004). [CrossRef]
  12. N. Felsen and L. B. Marcuvitz, Radiation and Scattering of Waves (Wiley, 1994). [CrossRef]
  13. W. C. Chew, Waves and Fields in Inhomogeneous Media, series on Electromagnetic Waves (IEEE Press, 1995).
  14. J. R. Mosig and F. E. Gardiol, “A dynamical radiation model for microstrip structures,” in Advances in Electronics and Electron Physics, P.W.Hawkes, ed. (Academic, 1982), pp. 139-237.
  15. K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media: I. Theory,” IEEE Trans. Antennas Propag. 38, 335-344 (1990). [CrossRef]
  16. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface I. Total radiated power,” J. Opt. Soc. Am. 67, 1607-1615 (1977). [CrossRef]
  17. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615-1619 (1977). [CrossRef]
  18. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane interface III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495-1503 (1979). [CrossRef]
  19. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030-3038 (1980). [CrossRef]
  20. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1-65 (1978). [CrossRef]
  21. P. Török, “Propagation of electromagnetic dipole waves through dielectric interfaces,” Opt. Lett. 25, 1463-1465 (2000). [CrossRef]
  22. J. Enderlein and M. Böhmer, “Influence of interface-dipole interactions on the efficiency of fluorescence light collection near surfaces,” Opt. Lett. 28, 941-943 (2003). [CrossRef] [PubMed]
  23. M. I. Aksun and R. Mittra, “Derivation of closed-form Green's functions for a general microstrip geometry,” IEEE Trans. Microwave Theory Tech. MTT-40, 2055-2062 (1992). [CrossRef]
  24. G. Dural and M. I. Aksun, “Closed-form Green's functions for general sources and stratified media,” IEEE Trans. Microwave Theory Tech. MTT-43, 1545-1552 (1995). [CrossRef]
  25. M. I. Aksun, “A robust approach for the derivation of closed-form Green's functions,” IEEE Trans. Microwave Theory Tech. MTT-44, 651-658 (1996). [CrossRef]
  26. M. I. Aksun and G. Dural, “Clarification of issues on the closed-form Green's functions in stratified media,” IEEE Trans. Antennas Propag. AP-53, 3644-3653 (2005). [CrossRef]
  27. Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229-234 (1989). [CrossRef]
  28. J. Enderlein, “Theoretical study of detection of a dipole emitter through an objective with high numerical aperture,” Opt. Lett. 25, 634-636 (2000). [CrossRef]
  29. A. N. Vamivakas, S. B. Ippolito, A. K. Swan, M. S. Ünlü, M. Dogan, E. R. Behringer, and B. B. Goldberg, “Phase-sensitive detection of dipole radiation in a fiber-based high numerical aperture optical system,” Opt. Lett. 32, 970-972 (2007). [CrossRef] [PubMed]
  30. M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Ünlü, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular Imaging” IEEE J. Sel. Top. Quantum Electron. 14, 217-225 (2008). [CrossRef]
  31. L. A. Moiseev, C. R. Cantor, I. Aksun, M. Dogan, B. B. Goldberg, A. K. Swan, and M. S. Ünlü, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311-5315 (2004). [CrossRef]
  32. B. Levine, A. Kulik, and W. S. Bacsa, “Optical space and time coherence near surfaces,” Phys. Rev. B 66, 233404 (2002). [CrossRef]
  33. W. S. Bacsa and A. Kulik, “Interference scanning optical probe microscopy,” Appl. Phys. Lett. 70, 3507-3509 (1997). [CrossRef]
  34. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000). [CrossRef] [PubMed]
  35. B. Davis and P. S. Carney, “Robust determination of the anisotropic polarizability of nanoparticles using coherent confocal microscopy,” J. Opt. Soc. Am. A 25, 2102-2113 (2008). [CrossRef]
  36. M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B 20, 554-559 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited