## Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary

JOSA A, Vol. 26, Issue 6, pp. 1494-1502 (2009)

http://dx.doi.org/10.1364/JOSAA.26.001494

Enhanced HTML Acrobat PDF (239 KB)

### Abstract

A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.

© 2009 Optical Society of America

**OCIS Codes**

(290.5880) Scattering : Scattering, rough surfaces

(010.4458) Atmospheric and oceanic optics : Oceanic scattering

**ToC Category:**

Scattering

**History**

Original Manuscript: January 9, 2009

Revised Manuscript: April 26, 2009

Manuscript Accepted: April 27, 2009

Published: May 29, 2009

**Citation**

J. Li, L.-X. Guo, H. Zeng, and X.-B. Han, "Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary," J. Opt. Soc. Am. A **26**, 1494-1502 (2009)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-6-1494

Sort: Year | Journal | Reset

### References

- J. A. Kong, Electromagnetic Wave Theory (Academic, 1986).
- D. Holliday, “Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory,” IEEE Trans. Antennas Propag. 35, 120-122 (1987). [CrossRef]
- R. Dusséaux and R. D. Oliveira, “Scattering of a plane wave by a 1-dimensional rough surface study in a nonorthogonal coordinate system,” Electromagn. Waves 34, 63-88 (2001). [CrossRef]
- D. Torrungrueng, H. T. Chou, and J. T. Johnson, “A novel acceleration algorithm for the computation of scattering from two-dimensional large-scale perfectly conducting random rough surfaces with the forward-backward method,” IEEE Trans. Geosci. Remote Sens. 38, 1656-1667 (2000). [CrossRef]
- M. Y. Xia, C. H. Chan, S. Q. Li, B. Zhang, and L. Tsang, “An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method,” IEEE Trans. Antennas Propag. 51, 1142-1149 (2003). [CrossRef]
- P. Liu and Y. Q. Jin, “Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method,” IEEE Trans. Antennas Propag. 52, 1205-1210 (2004). [CrossRef]
- J. Li, L.-X. Guo, and H. Zeng, “FDTD investigation on the electromagnetic scattering from a target above a randomly rough sea surface,” Waves Random Complex Media 18, 641-650 (2008). [CrossRef]
- J. Li, L.-X. Guo, and H. Zeng, “FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using upml absorbing condition,” Electromagn. Waves 88, 197-211 (2008). [CrossRef]
- C. Guiffaut and K. Mahdjoubi, “A parallel FDTD algorithm using the MP/Library,” IEEE Antennas Propag. Mag. 43, 94-103 (2001). [CrossRef]
- E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78-91 (1988). [CrossRef]
- J. V. Toporkov and G. S. Brown, “Numerical simulations of scattering from time-varying randomly rough surfaces,” IEEE Trans. Geosci. Remote Sens. 38, 1616-1625 (2001). [CrossRef]
- G. P. Harrison and A. R. Wallace, “Climate sensitivity of marine energy,” Renewable Energy 30, 1801-1817 (2005). [CrossRef]
- H. X. Ye and Y. Q. Jin, “Parametrization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface,” IEEE Trans. Antennas Propag. 53, 1234-1237 (2005). [CrossRef]
- S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630-1639 (1996). [CrossRef]
- S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media,” Electromagnetics 16, 425-449 (1996). [CrossRef]
- A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Academic, 2005).
- J. S. Juntunen and T. D. Tsiboukis, “Reduction of numerical dispersion in FDTD method through artificial anisotropy,” IEEE Trans. Microwave Theory Tech. 58, 582-588 (2000). [CrossRef]
- A. K. Fung, M. R. Shah, and S. Tjuatja, “Numerical simulation of scattering from three-dimensional randomly rough surfaces,” IEEE Trans. Geosci. Remote Sens. 32, 986-995 (1995). [CrossRef]
- G. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook (Academic, 1970).
- W. H. Yu, Y. J. Liu, T. Su, N. T. Hunag, and R. Mittra, “A robust parallel conformal finite-difference time-domain processing package using the MPI library,” IEEE Antennas Propag. Mag. 47, 39-59 (2005). [CrossRef]
- J. Z. Lei, C. H. Liang, W. D. Zhang, and Y. Zhang, “Study on mpi-based parallel modified conformal FDTD for 3-D electrically large coated targets by using effective parameters,” IEEE Antennas Wireless Propag. Lett. 7, 175-178 (2008). [CrossRef]
- F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Academic, 1982).
- L. Tsang and J. A. Kong, Scattering of Electromagnetic Waves: Numerical Simulations (Academic, 1982).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.