OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1606–1614

Modeling two-dimensional anisotropic photonic crystals by Dirichlet-to-Neumann maps

Huan Xie and Ya Yan Lu  »View Author Affiliations


JOSA A, Vol. 26, Issue 7, pp. 1606-1614 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001606


View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For photonic crystals (PhCs) and related devices, it is useful to calculate the Dirichlet-to-Neumann (DtN) map of a unit cell, which maps the wave field to its normal derivative on the boundary. The DtN map can be used to avoid further calculations in the interiors of the unit cells and formulate mathematical problems on the cell boundaries. We develop a method to approximate the DtN map for two-dimensional PhCs involving anisotropic media, and we calculate band structures for PhCs involving liquid crystals. For band structures of triangular lattice PhCs, we also develop new eigenvalue problem formulations involving smaller matrices.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 23, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: May 23, 2009
Published: June 18, 2009

Citation
Huan Xie and Ya Yan Lu, "Modeling two-dimensional anisotropic photonic crystals by Dirichlet-to-Neumann maps," J. Opt. Soc. Am. A 26, 1606-1614 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-7-1606


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton U. Press, 1995).
  2. I. H. H. Zabel and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B 48, 5004-5012 (1993). [CrossRef]
  3. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574-2577 (1998). [CrossRef]
  4. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  5. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, and S. John, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389-R2392 (2000). [CrossRef]
  6. C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, “Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals,” Phys. Rev. B 64, 085114 (2001). [CrossRef]
  7. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627-3629 (2001). [CrossRef]
  8. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767-2769 (2003). [CrossRef]
  9. M. J. Escuti, J. Qi, and G. P. Crawford, “Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals,” Opt. Lett. 28, 522-524 (2003). [CrossRef] [PubMed]
  10. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29, 2858-2860 (2004). [CrossRef]
  11. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  12. M. Marrone, V. F. Rodriguez-Esquerre, and H. E. Hernández-Figueroa, “Novel numerical method for the analysis of 2D photonic crystals: the cell method,” Opt. Express 10, 1299-1304 (2002). [PubMed]
  13. P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007). [CrossRef]
  14. S. M. Hsu, M. M. Chen, and H. C. Chang, “Inverstigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm,” Opt. Express 15, 5416-15430 (2007). [CrossRef] [PubMed]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  16. J. Yuan and Y. Y. Lu, “Photonic bandgap calculations using Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. A 23, 3217-3222 (2006). [CrossRef]
  17. J. Yuan and Y. Y. Lu, “Computing photonic band structures by Dirichlet-to-Neumann maps: The triangular lattice,” Opt. Commun. 273, 114-120 (2007). [CrossRef]
  18. Y. Huang, Y. Y. Lu, and S. Li, “Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. B 24, 2860-2867 (2007). [CrossRef]
  19. S. Li and Y. Y. Lu, “Computing photonic crystal defect modes by Dirichlet-to-Neumann maps,” Opt. Express 15, 14454-14466 (2007). [CrossRef] [PubMed]
  20. Y. Huang and Y. Y. Lu, “Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps,” J. Lightwave Technol. 24, 3448-3453 (2006). [CrossRef]
  21. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice,” J. Opt. Soc. Am. B 25, 1466-1473 (2008). [CrossRef]
  22. Z. Hu and Y. Y. Lu, “Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps,” Opt. Express 16, 17383-17399 (2008). [CrossRef] [PubMed]
  23. H. Takeda and K. Yoshino, “TE-TM mode coupling in two-dimensional photonic crystals composed of liquid-crystal rods,” Phys. Rev. E 70, 026601 (2004). [CrossRef]
  24. S. M. Hsu and H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,” Opt. Express 15, 15797-15822 (2007). [CrossRef] [PubMed]
  25. G. Alagappan, X. W. Sun, and P. Shum, “Symmetry properties of two-dimensional anisotropic photonic crystals,” J. Opt. Soc. Am. A 23, 2002-2013 (2006). [CrossRef]
  26. J. Yuan, Y. Y. Lu, and X. Antoine, “Modeling photonic crystals by boundary integral equation and Dirichlet-to-Neumann maps,” J. Comput. Phys. 9, 4617-4629 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited