OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1615–1621

Dyakonov–Tamm wave guided by a twist defect in a structurally chiral material

Jun Gao, Akhlesh Lakhtakia, John A. Polo, Jr., and Mingkai Lei  »View Author Affiliations


JOSA A, Vol. 26, Issue 7, pp. 1615-1621 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001615


View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The boundary-value problem for a Dyakonov–Tamm wave guided by a twist defect in a structurally chiral material and propagating along the bisector of the twist defect was formulated. The resulting dispersion equation was numerically solved. Detailed analysis showed that either two or three different Dyakonov–Tamm waves can propagate, depending on the value of the twist angle. These waves have different phase speeds and degrees of localization to the twist–defect interface.

© 2009 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.6690) Optics at surfaces : Surface waves
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Materials

History
Original Manuscript: March 23, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: June 1, 2009
Published: June 18, 2009

Citation
Jun Gao, Akhlesh Lakhtakia, John A. Polo, Jr., and Mingkai Lei, "Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material," J. Opt. Soc. Am. A 26, 1615-1621 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-7-1615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846-866 (1907). [CrossRef]
  2. A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665-736 (1909). [CrossRef]
  3. H. M. Barlow, Radio Surface Waves (Clarendon Press, 1962).
  4. A.D.Boardman, ed. Electromagnetic Surface Modes (Wiley, 1982).
  5. M. I. D'yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714-716 (1988).
  6. L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photon. Technol. Lett. 5, 201-203 (1993). [CrossRef]
  7. L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995). [CrossRef]
  8. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, “Surface mode at isotropic-uniaxial andisotropic-biaxial interfaces,” J. Opt. Soc. Am. A 15, 248-260 (1998). [CrossRef]
  9. A. N. Darinskii, “Dispersionless polaritons on a twist boundary in optically uniaxial crystals,” Crystallogr. Rep. 46, 842-844 (2001). [CrossRef]
  10. D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94, 013901 (2005). [CrossRef] [PubMed]
  11. L. C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface wave at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005). [CrossRef] [PubMed]
  12. J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006). [CrossRef]
  13. J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007). [CrossRef]
  14. J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Surface waves at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 2974-2979 (2007). [CrossRef]
  15. A. M. Furs and L. M. Barkovsky, “Surface polaritons at the planar interface of twinned gyrotropic dielectric media,” Electromagnetics 28, 146-161 (2008). [CrossRef]
  16. S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008). [CrossRef]
  17. O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008). [CrossRef]
  18. S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008). [CrossRef]
  19. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009). [CrossRef] [PubMed]
  20. A. Lakhtakia and J. A. Polo, Jr., “Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Publ. 2, 07021 (2007). [CrossRef]
  21. I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76, 849-850 (1932). [CrossRef]
  22. C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, India, 1974).
  23. H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990). [CrossRef] [PubMed]
  24. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A, Pure Appl. Opt. 8, 630-638 (2006). [CrossRef]
  25. A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006). [CrossRef]
  26. A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007). [CrossRef]
  27. K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A, Pure Appl. Opt. 11, 074003 (2009). [CrossRef]
  28. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).
  29. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005). [CrossRef]
  30. I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: Results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (France) 46, 815-825 (1985). [CrossRef]
  31. V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Proc. R. Soc. London, Ser. A 456, 125-161 (2000). [CrossRef]
  32. J. B. Geddes III and A. Lakhtakia, “Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films,” Opt. Commun. 252, 307-320 (2005). [CrossRef]
  33. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002). [CrossRef] [PubMed]
  34. F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79-92 (2003). [CrossRef]
  35. M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004). [CrossRef]
  36. F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. London, Ser. A 461, 2985-3004 (2005). [CrossRef]
  37. A. Lakhtakia, “Electrically tunable, ultranarrowband, circular-polarization rejection filters with electro-optic structurally chiral materials,” J. Eur. Opt. Soc. Rapid Publ. 1, 06006 (2006). [CrossRef]
  38. A. Lakhtakia, “Narrowband and ultranarrowband filters with electro-optic structurally chiral materials,” Asian J. Phys. 15, 275-282 (2006).
  39. N. S. Averkiev and M. I. Dyakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Opt. Spectrosc. 68, 653-655 (1990).
  40. S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 856-865 (2007). [CrossRef]
  41. S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface: errata,” J. Opt. Soc. Am. A 24, 2012 (2007).
  42. M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563-1575 (2001). [CrossRef]
  43. J. A. Polo, Jr., and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic media,” Opt. Commun. 230, 369-386 (2004). [CrossRef]
  44. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  45. Given the symmetries in the problem addressed here, a matrix [N͇(γ,κ)] can be defined such that [N͇+]=[N͇(γ,κ)] and [N͇−]=[N͇(−γ,κ)]−1. The matrices [N͇+] and [N͇−] share the same set of eigenvalues but do not have the same set of eigenvectors.
  46. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000). [CrossRef]
  47. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001). [CrossRef]
  48. A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic media: oblique propagation,” Proc. R. Soc. London, Ser. A 453, 93-105 (1997). [CrossRef]
  49. Y. Jaluria, Computer Methods for Engineering (Brunner-Routledge, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited