OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1661–1667

All-optical nonlinear switching cell made of photonic crystal

A. Wirth Lima, Jr., Marcio G. da Silva, A. C. Ferreira, and A. S. B. Sombra  »View Author Affiliations

JOSA A, Vol. 26, Issue 7, pp. 1661-1667 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (965 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze and propose a directional optical coupler embedded in photonic crystal, which is driven by an external command signal. Therefore, this switching cell can work in an all-optical switch. The switching method uses a low-power external command signal, inserted in the central coupling region, which acts as another waveguide. The switching process is based on the change from the bar state to the cross state due to the external command signal. In our simulations we used the plane wave expansion method, finite-difference time-domain method, and our own binary propagation method.

© 2009 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(130.4815) Integrated optics : Optical switching devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: January 12, 2009
Revised Manuscript: May 7, 2009
Manuscript Accepted: May 14, 2009
Published: June 24, 2009

A. Wirth Lima, Jr., Marcio G. da Silva, A. C. Ferreira, and A. S. B. Sombra, "All-optical nonlinear switching cell made of photonic crystal," J. Opt. Soc. Am. A 26, 1661-1667 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Vol. 414, pp. 295-301.
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, 2008), pp. 66-93.
  3. S. G. Johnson and D. Joannopoulus, “Block-iterative frequency domain methods for Maxwell equations in planis basis,” Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  4. A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002). [PubMed]
  5. P.-G. Luan and K.-D. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263-3272 (2006). [CrossRef] [PubMed]
  6. F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, “All-optical switching structure based on a photonic crystal directional coupler,” Opt. Express 12, 161-167 (2004). [CrossRef] [PubMed]
  7. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  8. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147-149 (2008). [CrossRef] [PubMed]
  9. R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Springer-Verlag, 2003), pp. 351-368.
  10. S. Assefa and Y. A. Vlasov, “High-order dispersion in photonic crystal waveguides,” Opt. Express 15, 17562-17569 (2007). [CrossRef] [PubMed]
  11. C. P. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384-390 (2003). [CrossRef]
  12. S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997). [CrossRef]
  13. S. Yao, B. Mukheree, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000). [CrossRef]
  14. A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited