OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1678–1686

Target detection in active polarization images perturbed with additive noise and illumination nonuniformity

Arnaud Bénière, François Goudail, Daniel Dolfi, and Mehdi Alouini  »View Author Affiliations

JOSA A, Vol. 26, Issue 7, pp. 1678-1686 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Active imaging systems that illuminate a scene with polarized light and acquire two images in two orthogonal polarizations yield information about the intensity contrast and the orthogonal state contrast (OSC) in the scene. Both contrasts are relevant for target detection. However, in real systems, the illumination is often spatially or temporally nonuniform. This creates artificial intensity contrasts that can lead to false alarms. We derive generalized likelihood ratio test (GLRT) detectors, for which intensity information is taken into account or not and determine the relevant expressions of the contrast in these two situations. These results are used to determine in which cases considering intensity information in addition to polarimetric information is relevant or not.

© 2009 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems

ToC Category:
Physical Optics

Original Manuscript: January 14, 2009
Manuscript Accepted: April 25, 2009
Published: June 24, 2009

Arnaud Bénière, François Goudail, Daniel Dolfi, and Mehdi Alouini, "Target detection in active polarization images perturbed with additive noise and illumination nonuniformity," J. Opt. Soc. Am. A 26, 1678-1686 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vis. Comput. 15, 81-93 (1997). [CrossRef]
  2. P. J. Wu, J. Joseph, and T. Walsh, “Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light,” J. Biomed. Opt. 11, 014031 (2006). [CrossRef] [PubMed]
  3. J. M. Bueno, J. Hunter, C. Cookson, M. Kisilak, and M. Campbell, “Improved scanning laser fundus imaging using polarimetry,” J. Opt. Soc. Am. A 24, 1337-1348 (2007). [CrossRef]
  4. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006). [CrossRef]
  5. P. Terrier, V. Devlaminck, and J. M. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423-430 (2008). [CrossRef]
  6. S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806 nm,” Opt. Eng. 39, 2681-2688 (2000). [CrossRef]
  7. R. E. Nothdurft and G. Yao, “Effects of turbid media optical properties on object visibility in subsurface polarization imaging,” Appl. Opt. 45, 5532-5541 (2006). [CrossRef] [PubMed]
  8. M. Anastasiadou, A. De Martino, D. Clement, F. Lige, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 991-999 (2008). [CrossRef]
  9. P. Terrier and V. DeVlaminck, “Robust and accurate estimate of the orientation of partially polarized light from a camera sensor,” Appl. Opt. 40, 5233-5239 (2001). [CrossRef]
  10. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284-293 (2003). [CrossRef]
  11. F. Goudail and P. Réfrégier, “Statistical techniques for target detection in polarization diversity images,” Opt. Lett. 26, 644-646 (2001). [CrossRef]
  12. M. Roche, J. Fade, and P. Réfrégier, “Parametric estimation of the square degree of polarization from two intensity images degraded by fully developed speckle noise,” J. Opt. Soc. Am. A 24, 2719-2727 (2007). [CrossRef]
  13. P. Réfrégier, M. Roche, and F. Goudail, “Cramer-Rao lower bound for the estimation of the degree of polarization in active coherent imagery at low photon level,” Opt. Lett. 31, 3565-3567 (2006). [CrossRef] [PubMed]
  14. V. L. Gamiz and J. F. Belsher, “Performance limitations of a four-channel polarimeter in the presence of detection noise,” Opt. Eng. 41, 973-980 (2002). [CrossRef]
  15. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise,” J. Opt. Soc. Am. A 25, 919-929 (2008). [CrossRef]
  16. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08,002 (2008). [CrossRef]
  17. F. Goudail and P. Réfrégier, “Target segmentation in active polarimetric images by use of statistical active contours,” Appl. Opt. 41, 874-883 (2002). [CrossRef] [PubMed]
  18. O. Germain and P. Réfrégier, “Snake-based method for the segmentation of objects in multichannel images degraded by speckle,” Opt. Lett. 24, 814-816 (1999). [CrossRef]
  19. M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J.: Appl. Phys. 42, 129-139 (2008). [CrossRef]
  20. S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. I, Estimation Theory (Prentice-Hall, 1993).
  21. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 1991).
  22. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge U. Press, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited