OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 7 — Jul. 1, 2009
  • pp: 1730–1746

Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework

Frédéric Champagnat, Guy Le Besnerais, and Caroline Kulcsár  »View Author Affiliations

JOSA A, Vol. 26, Issue 7, pp. 1730-1746 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address performance modeling of superresolution (SR) techniques. Superresolution consists in combining several images of the same scene to produce an image with better resolution and contrast. We propose a discrete data-continuous reconstruction framework to conduct SR performance analysis and derive a theoretical expression of the reconstruction mean squared error (MSE) as a compact, computationally tractable function of signal-to-noise ratio (SNR), scene model, sensor transfer function, number of frames, interframe translation motion, and SR reconstruction filter. A formal expression for the MSE is obtained that allows a qualitative study of SR behavior. In particular we provide an original outlook on the balance between noise and aliasing reduction in linear SR. Explicit account for the SR reconstruction filter is an original feature of our model. It allows for the first time to study not only optimal filters but also suboptimal ones, which are often used in practice.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6640) Image processing : Superresolution

ToC Category:
Image Processing

Original Manuscript: February 5, 2009
Revised Manuscript: May 20, 2009
Manuscript Accepted: May 20, 2009
Published: June 25, 2009

Frédéric Champagnat, Guy Le Besnerais, and Caroline Kulcsár, "Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework," J. Opt. Soc. Am. A 26, 1730-1746 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Y. Tsai and T. S. Huang, “Multiframe image restoration and registration,” in Advances in Computer Vision and Image Processing: Image Reconstruction from Incomplete ObservationsT.S.Huang, ed. (JAI Press, 1984), pp. 317-339.
  2. R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution frames from video sequences,” IEEE Trans. Image Process. 5, 996-1011 (1996). [CrossRef] [PubMed]
  3. A. J. Patti, M. I. Sezan, and A. M. Tekalp, “Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time,” IEEE Trans. Image Process. 6, 1064-1076 (1997). [CrossRef] [PubMed]
  4. R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process. 6, 1621-1633 (1997). [CrossRef] [PubMed]
  5. M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6, 1646-1658 (1997). [CrossRef] [PubMed]
  6. S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super-resolution,” IEEE Trans. Image Process. 13, 1327-1343 (2004). [CrossRef] [PubMed]
  7. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag. 20, 21-36 (2003). [CrossRef]
  8. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution: special issue on high resolution image reconstruction,” Int. J. Imaging Syst. Technol. 14, 47-57 (2004). [CrossRef]
  9. S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167-1183 (2002). [CrossRef]
  10. Z. Lin and H.-Y. Shum, “Fundamental limits of reconstruction-based superresolution algorithms under local translation,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 83-97 (2004). [CrossRef] [PubMed]
  11. Z. Wang and F. Qi, “Analysis of multiframe super-resolution reconstruction for image anti-aliasing and deblurring,” Image Vis. Comput. 23, 393-404 (2005). [CrossRef]
  12. D. Robinson and P. Milanfar, “Statistical performance analysis of super-resolution,” IEEE Trans. Image Process. 15, 1413-1428 (2006). [CrossRef] [PubMed]
  13. F. Champagnat, C. Kulcsár, and G. Le Besnerais, “Continuous super-resolution for recovery of 1-D image features: Algorithm and performance modeling,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), Vol. 1, pp. 916-926.
  14. A. W. M. van Eekeren, K. Schutte, O. R. Oudegeest, and L. van Vliet, “Performance evaluation of super-resolution reconstruction methods on real-world data,” EURASIP J. Advances Signal Process. 2007, 43953 (2007).
  15. D. J. Brady, “Micro-optics and megapixels,” Opt. Photonics News 17, 24-29 (2006). [CrossRef]
  16. D. Robinson and D. G. Stork, “Joint digital-optical design of superresolution multiframe imaging systems,” Appl. Opt. 47, 11-20 (2008). [CrossRef]
  17. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): Concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001). [CrossRef]
  18. F. Sroubek, G. Cristobal, and J. Flusser, “A unified approach to superresolution and multichannel blind deconvolution,” IEEE Trans. Image Process. 16, 2322-2332 (2007). [CrossRef] [PubMed]
  19. D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registration of aliased images using variable projection with applications to super-resolution,” Comput. J. bxm007v1-12 (2007).
  20. C. L. Fales, F. O. Huck, J. A. McCormick, and S. K. Park, “Wiener restoration of sampled image data: end-to-end analysis,” J. Opt. Soc. Am. A 5, 300-314 (1988). [CrossRef]
  21. J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt. 6, 1203-1214 (2006). [CrossRef]
  22. Y. Eldar and M. Unser, “Nonideal sampling and interpolation from noisy observations in shift-invariant spaces,” IEEE Trans. Signal Process. 54, 2636-2651 (2006). [CrossRef]
  23. S. Ramani, D. Van De Ville, T. Blu, and M. Unser, “Nonideal sampling and regularization theory,” IEEE Trans. Signal Process. 56, 1055-1070 (2008). [CrossRef]
  24. M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translationnal motion and common space-invariant blur,” IEEE Trans. Image Process. 10, 1187-1193 (2001). [CrossRef]
  25. N. Nguyen, P. Milanfar, and G. Golub, “A computationally efficient superresolution image reconstruction algorithm,” IEEE Trans. Image Process. 10, 573-583 (2001). [CrossRef]
  26. S. Prasad, “Digital superresolution and the generalized sampling theorem,” J. Opt. Soc. Am. A 24, 311-325 (2007). [CrossRef]
  27. E. S. Lee and M. G. Kang, “Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration,” IEEE Trans. Image Process. 12, 526-837 (2003).
  28. L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman, “Bayesian methods for image super-resolution,” Comput. J. 52, 101-113 (2009). [CrossRef]
  29. F. Champagnat, G. Le Besnerais, and C. Kulcsár, “Performance modeling of regularized, linear, spatially invariant super-resolution methods,” Tech. rep., RT 1/12265 DTIM (ONERA, 2008).
  30. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng. (Bellingham) 37, 247-260 (1998). [CrossRef]
  31. S. E. Reichenbach, S. K. Park, and R. Narayanswamy, “Characterizing digital image acquisition devices,” Opt. Eng. (Bellingham) 30, 170-177 (1991). [CrossRef]
  32. D. P. Capel, “Image mosaicing and super-resolution,” Ph.D. thesis, (University of Oxford, 2001).
  33. J. Shi and S. Reichenbach, “Image interpolation by two-dimensional parametric cubic convolution,” IEEE Trans. Image Process. 15, 1857-1870 (2006). [CrossRef] [PubMed]
  34. R. C. Hardie, “A fast image super-resolution algorithm using an adaptive Wiener filter,” IEEE Trans. Image Process. 16, 2953-2964 (2007). [CrossRef] [PubMed]
  35. J. Kent and K. Mardia, “The link between kriging and thin plate splines,” in Probability, Statistics and Optimization: a Tribute to Peter Whittle (Wiley, 1994), pp. 325-339.
  36. H. R. Künsch, “Intrinsic autoregressions and related models on the two-dimensional lattice,” Biometrika 74, 517-524 (1987).
  37. J. W. Goodman, Introduction à l'Optique de Fourier et à l'Holographie (Masson, Paris, 1972).
  38. A. J. Patti and Y. Altunbasak, “Artifact reduction for set theoretic super resolution image reconstruction with edge adaptative constraints and higher-order interpolants,” IEEE Trans. Image Process. 10, 179-186 (2001). [CrossRef]
  39. M. Shimizu and M. Okutomi, “Sub-pixel estimation error cancellation on area-based matching,” Int. J. Comput. Vis. 63, 207-224 (2005). [CrossRef]
  40. H. Ur and D. Gross, “Improved resolution from sub-pixel shifted pictures,” CVGIP: Graph. Models Image Process. 54, 181-186 (1992). [CrossRef]
  41. S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Transactions on Acoustics, IEEE Trans. Acoust., Speech, Signal Process. 38, 1013-1027 (1990). [CrossRef]
  42. M. Irani and S. Peleg, “Improving resolution by image registration,” Comput. Vis. Graph. Image Process. 52, 231-239 (1991).
  43. A. Papoulis, Probability, Random Variables and Stochastic Processes, 2nd ed. (McGraw-Hill, 1984).
  44. S. P. Kim and W. Y. Su, “Recursive high-resolution reconstruction of blurred multiframe images,” IEEE Trans. Image Process. 2, 534-539 (1993). [CrossRef] [PubMed]
  45. F. Champagnat and G. Le Besnerais, “A Fourier interpretation of super-resolution techniques,” in Proceedings of the IEEE International Conference on Image Processing 2005 (IEEE, 2005), Vol. 1, pp. 865-868.
  46. M. Unser and J. Zerubia, “Generalized sampling: Stability and performance analysis,” IEEE Trans. Image Process. 12, 2941-2950 (1997).
  47. D. Seidner and M. Feder, “Noise amplification of periodic nonuniform sampling,” IEEE Trans. Image Process. 48, 275-277 (2000).
  48. B. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in Proceedings of 7th International Joint Conference Artificial Intelligence (IJCAI, 1981), pp. 674-679.
  49. S. Baker and I. Matthews, “Lukas-Kanade 20 years on: A unifying framework,” Int. J. Comput. Vis. 56, 221-255 (2004). [CrossRef]
  50. G. Rochefort, F. Champagnat, G. Le Besnerais, and J.-F. Giovannelli, “An improved observation model for super-resolution under affine motion,” IEEE Trans. Image Process. 15, 3325-3337 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited